Image analysis by discrete orthogonal dual Hahn moments

Abstract

In this paper, we introduce a set of discrete orthogonal functions known as dual Hahn polynomials. The Tchebichef and Krawtchouk polynomials are special cases of dual Hahn polynomials. The dual Hahn polynomials are scaled to ensure the numerical stability, thus creating a set of weighted orthonormal dual Hahn polynomials. They are allowed to define a new type of discrete orthogonal moments. The discrete orthogonality of the proposed dual Hahn moments not only ensures the minimal information redundancy, but also eliminates the need for numerical approximations. The paper also discusses the computational aspects of dual Hahn moments, including the recurrence relation and symmetry properties. Experimental results show that the dual Hahn moments perform better than the Legendre moments, Tchebichef moments, and Krawtchouk moments in terms of image reconstruction capability in both noise-free and noisy conditions. The dual Hahn moment invariants are derived using a linear combination of geometric moments. An example of using the dual Hahn moment invariants as pattern features for a pattern classification application is given. 2007 Elsevier B.V. All rights reserved.

DOI: 10.1016/j.patrec.2007.04.013

Extracted Key Phrases

19 Figures and Tables

Statistics

010202008200920102011201220132014201520162017
Citations per Year

71 Citations

Semantic Scholar estimates that this publication has 71 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Zhu2007ImageAB, title={Image analysis by discrete orthogonal dual Hahn moments}, author={Hongqing Zhu and Huazhong Shu and Jian Zhou and Limin Luo and Jean-Louis Coatrieux}, journal={Pattern Recognition Letters}, year={2007}, volume={28}, pages={1688-1704} }