Abstract Illumination complexes are examples of ‘flat polyhedral complexes’ which arise if several copies of a convex polyhedron (convex body) Q are glued together along some of their common faces (closed convex subsets of their boundaries). A particularly nice example arises if Q is a Δ-zonotope (generalized rhombic dodecahedron), known also as the dual of the difference body Δ − Δ of a simplex Δ, or the dual of the convex hull of the root system A n . We demonstrate that the illumination… CONTINUE READING