Identifying Interstellar Objects Trapped in the Solar System through Their Orbital Parameters

@article{Siraj2019IdentifyingIO,
  title={Identifying Interstellar Objects Trapped in the Solar System through Their Orbital Parameters},
  author={Amir Siraj and Abraham Loeb},
  journal={The Astrophysical Journal},
  year={2019}
}
  • A. Siraj, A. Loeb
  • Published 23 November 2018
  • Physics, Geology
  • The Astrophysical Journal
The first interstellar object, `Oumuamua, was discovered in the Solar System by Pan-STARRS in 2017, allowing for a calibration of the abundance of interstellar objects of its size and an estimation of the subset of objects trapped by the Jupiter-Sun system. Photographing or visiting these trapped objects would allow for learning about the conditions in other planetary systems, saving the need to send interstellar probes. Here, we explore the orbital properties of captured interstellar objects… 

Figures and Tables from this paper

The Population of Interstellar Objects Detectable with the LSST and Accessible for In Situ Rendezvous with Various Mission Designs
The recently discovered population of interstellar objects presents us with the opportunity to characterize material from extrasolar planetary and stellar systems up close. The forthcoming Vera C.
The New Astronomical Frontier of Interstellar Objects
The upcoming commencement of the Vera C. Rubin Observatory’s Legacy Survey of Space of Time (LSST) will greatly enhance the discovery rate of interstellar objects (ISOs). ‘Oumuamua and Borisov were
No evidence for interstellar planetesimals trapped in the Solar system
In two recent papers published in MNRAS, Namouni and Morais claimed evidence for the interstellar origin of some small Solar system bodies, including: (i) objects in retrograde co-orbital motion
Exobodies in Our Back Yard: Science from Missions to Nearby Interstellar Objects
The recent discovery of the first confirmed Interstellar Objects (ISOs) passing through the Solar System on clearly hyperbolic objects opens the potential for near term ISO missions, either to the
Capture of interstellar objects: a source of long-period comets
  • T. Hands, W. Dehnen
  • Physics, Geology
    Monthly Notices of the Royal Astronomical Society: Letters
  • 2020
We simulate the passage through the Sun–Jupiter system of interstellar objects (ISOs) similar to 1I/‘Oumuamua or 2I/Borisov. Capture of such objects is rare and overwhelmingly from low incoming
On the Capture of Interstellar Objects by Our Solar System
Motivated by recent visits from interstellar comets, along with continuing discoveries of minor bodies in orbit of the Sun, this paper studies the capture of objects on initially hyperbolic orbits by
High-drag Interstellar Objects and Galactic Dynamical Streams
  • T. Eubanks
  • Physics, Geology
    The Astrophysical Journal
  • 2019
The nature of 1I/'Oumuamua (henceforth, 1I), the first interstellar object known to pass through the solar system, remains mysterious. Feng \& Jones noted that the incoming 1I velocity vector "at
Halo Meteors
Galactic tide and local stellar perturbations on the Oort cloud: creation of interstellar comets
Comets in the Oort cloud evolve under the influence of internal and external perturbations, such as giant planets, stellar passages, and the Galactic gravitational tidal field. We aim to study the
Detecting Interstellar Objects through Stellar Occultations
Stellar occultations have been used to search for Kuiper Belt and Oort Cloud objects. We propose a search for interstellar objects based on the characteristic durations ($\sim 0.1 \mathrm{s}$) of
...
1
2
...

References

SHOWING 1-10 OF 33 REFERENCES
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua
During the formation and evolution of the Solar System, significant numbers of cometary and asteroidal bodies were ejected into interstellar space1,2. It is reasonable to expect that the same
A brief visit from a red and extremely elongated interstellar asteroid
TLDR
Observations and analysis of the object 1I/2017 U1 (‘Oumuamua) that demonstrate its extrasolar trajectory, and that enable comparisons to be made between material from another planetary system and from the authors' own, reveal it to be asteroidal with no hint of cometary activity despite an approach within 0.25 astronomical units of the Sun.
An interstellar origin for Jupiter’s retrograde co-orbital asteroid
Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter's co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar System have so far precluded
Will the Large Synoptic Survey Telescope Detect Extra-Solar Planetesimals Entering the Solar System?
Planetesimal formation is a common by-product of the star formation process. Taking the dynamical history of the solar system as a guideline—in which the planetesimal belts were heavily depleted due
Interstellar Interlopers: Number Density and Origin of ‘Oumuamua-like Objects
We provide a calculation of Pan-STARRS' ability to detect objects similar to the interstellar object 1I/2017 U1 (hereafter 'Oumuamua), including the most detectable approach vectors and the effect of
An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets
We derived 90% confidence limits (CL) on the interstellar number density ($\rho_{IS}^{CL}$) of interstellar objects (ISO; comets and asteroids) as a function of the slope of their size-frequency
Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua
The recent discovery by Pan-STARRS1 of 1I/2017 U1 (`Oumuamua), on an unbound and hyperbolic orbit, offers a rare opportunity to explore the planetary formation processes of other stars, and the
Observational Constraints on the Centaur Population
Abstract Spacewatch was the first large-scale astronomical survey program employing automated and real-time software for moving object detection. The search has resulted in the discovery of three new
The Feasibility and Benefits of In Situ Exploration of ‘Oumuamua-like Objects
A rapid accumulation of observations and interpretation have followed in the wake of 1I `Oumuamua's passage through the inner Solar System. We briefly outline the consequences that this first
Kinematics of the Interstellar Vagabond 1I/'Oumuamua (A/2017 U1)
The initial Galactic velocity vector for the recently discovered hyperbolic asteroid 1I/'Oumuamua (A/2017 U1) is calculated for before its encounter with our solar system. The latest orbit (JPL-13)
...
1
2
3
4
...