Hyperbolicity of 3-trip Lorenz knots

@article{Ma2016HyperbolicityO3,
  title={Hyperbolicity of 3-trip Lorenz knots},
  author={J. Ma},
  journal={Topology and its Applications},
  year={2016},
  volume={212},
  pages={57-70}
}
  • J. Ma
  • Published 2016
  • Mathematics
  • Topology and its Applications
Abstract Using Xu's conjugacy algorithm on the braid group B 3 [6] , [31] and the hyperbolicity criterion of 3-braid links by Futer–Kalfagianni–Purcell [14] , we classify Lorenz knots of trip number 3 into torus knots and hyperbolic knots. Moreover, we provide another approach to this problem. Modulo a conjectural pseudo-Anosov criterion, we can also classify Lorenz knots of trip number 3 based upon the Dehornoy floor theory. The author believes that the second approach is promising for the… Expand

References

SHOWING 1-10 OF 29 REFERENCES
Classifying 3-trip Lorenz knots
  • 11
THE GENUS OF CLOSED 3-BRAIDS
  • 55
A new twist on Lorenz links
  • 33
  • PDF
Surface groups and 3-manifolds which fiber over the circle
  • 261
  • PDF
Linking Numbers of Modular Knots
  • 11
  • PDF
The closure of a random braid is a hyperbolic link
  • 9
  • PDF
A note on closed 3-braids
  • 22
  • PDF
...
1
2
3
...