Hybrid control of the boost converter: Robust global stabilization


In this paper we consider the modeling and (robust) control of a DC-DC boost converter. In particular, we derive a mathematical model consisting of a constrained switched differential inclusion that includes all possible modes of operation of the converter. The obtained model is carefully selected to be amenable for the study of various important robustness properties. By exploiting this model we design a control algorithm that induces robust, global asymptotic stability of a desired output voltage value. The guaranteed robustness properties ensure proper operation of the converter in the presence of spatial regularization to reduce the high rate of switching. The establishment of these properties is enabled by recent tools for the study of robust stability in hybrid systems. Simulations illustrating the main results are included.

DOI: 10.1109/CDC.2013.6760442

Extracted Key Phrases

7 Figures and Tables

Cite this paper

@inproceedings{Theunisse2013HybridCO, title={Hybrid control of the boost converter: Robust global stabilization}, author={Thomas A. F. Theunisse and Jun Chai and Ricardo G. Sanfelice and W. P. M. H. Heemels}, booktitle={CDC}, year={2013} }