Hp spaces of several variables

@article{Fefferman1972HpSO,
  title={Hp spaces of several variables},
  author={Charles Fefferman and Elias M. Stein},
  journal={Acta Mathematica},
  year={1972},
  volume={129},
  pages={137-193}
}

Bounds of Singular Integrals on Weighted Hardy Spaces and Discrete Littlewood–Paley Analysis

We apply the discrete version of Calderón’s reproducing formula and Littlewood–Paley theory with weights to establish the $H^{p}_{w} \to H^{p}_{w}$ (0<p<∞) and $H^{p}_{w}\to L^{p}_{w}$ (0<p≤1)

Boundedness of Singular Integrals on Multiparameter Weighted Hardy Spaces $\text{{\textit{H}}}^\text{{\textit{p}}}_{\text{{\textit{w}}}}\ (\mathbb{R}^{\text{{\textit{n}}}}\times \mathbb{R}^{\text{{\textit{m}}}})$

We apply the discrete version of Calderón’s identity and Littlewood–Paley–Stein theory with weights to derive the $(H^p_w, H^p_w)$ and $(H^p_w, L^p_w) (0<p\le 1)$ boundedness for multiparameter

New Ball Campanato-Type Function Spaces and Their Applications

Let X be a ball quasi-Banach function space on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}

Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

Let X be a ball quasi-Banach function space satisfying some mild assumptions and H X ( R n ) the Hardy space associated with X . In this article, the authors introduce both the Hardy space H X ( R n

Necessary and sufficient conditions for boundedness of commutators associated with Calderón–Zygmund operators on slice spaces

Let t∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek}

Maximal Function and Riesz Transform Characterizations of Hardy Spaces Associated with Homogeneous Higher Order Elliptic Operators and Ball Quasi-Banach Function Spaces

Let L be a homogeneous divergence form higher order elliptic operator with complex bounded measurable coefficients on R and X a ball quasi-Banach function space on R satisfying some mild assumptions.

Boundedness of Fractional Integrals on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

Let X be a ball quasi-Banach function space on R n and H X ( R n ) the Hardy space associated with X , and let α ∈ (0 , n ) and β ∈ (1 , ∞ ). In this article, assuming that the (pow-ered)

Commutators of Hausdorff operators on Herz-type Hardy spaces

In this article, by applying the results of Zhou (Taiwan J Math 13:983–996, 2009), we investigate the boundedness for the commutators of Hausdorff operators on the weighted Herz-type Hardy spaces

The CMO-Dirichlet Problem for the Schrödinger Equation in the Upper Half-Space and Characterizations of CMO

Let L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek}

Fourier Transform of Anisotropic Mixed-norm Hardy Spaces with Applications to Hardy-Littlewood Inequalities

. Let (cid:126)p ∈ (0 , 1] n be an n -dimensional vector and A a dilation. Let H (cid:126)pA ( R n ) denote the anisotropic mixed-norm Hardy space defined via the radial maximal function. Using the
...

References

SHOWING 1-10 OF 25 REFERENCES