How a gap junction maintains its structure.


In gap junctions, identical membrane proteins are linked up in pairs (dyads) that bridge the extracellular space between two apposed cell membranes. Typically, several thousand of these dyads are aggregated in the plane of the membranes and form a junctional plaque with a distinct boundary. The question thus arises as to what maintains the dyads in an aggregated state. From a statistical mechanical analysis of the positions of dyads in a freeze-fracture electron micrograph, we report here that the aggregates are not maintained by an attractive force between pairs of dyads, but probably by the minimization of the repulsive force between apposed membranes. On the basis of this analysis we present a model for the structure of mature gap junctions as well as certain aspects of the formation and disassembly of gap junctions.


Citations per Year

334 Citations

Semantic Scholar estimates that this publication has 334 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Braun1984HowAG, title={How a gap junction maintains its structure.}, author={Jenny Braun and James R. Abney and John C. Owicki}, journal={Nature}, year={1984}, volume={310 5975}, pages={316-8} }