Homology of Fortuin-Kasteleyn clusters of Potts models on the torus

@inproceedings{ArguinHomologyOF,
  title={Homology of Fortuin-Kasteleyn clusters of Potts models on the torus},
  author={Louis-Pierre Arguin}
}
  • Louis-Pierre Arguin
Topological properties of Fortuin-Kasteleyn clusters are studied on the torus. Namely, the probability that their topology yields a given subgroup of the first homology group of the torus is computed for Q = 1, 2, 3 and 4. The expressions generalize those obtained by Pinson for percolation (Q = 1). Numerical results are also presented for three tori of different moduli. They agree with the theoretical predictions for Q = 1, 2 and 3. For Q = 4 agreement is not ruled out but what seems… CONTINUE READING
2 Citations
5 References
Similar Papers

Citations

Publications citing this paper.
Showing 1-2 of 2 extracted citations

References

Publications referenced by this paper.
Showing 1-5 of 5 references

, Sca ; ing thoery of the Potts - model multicritical points

  • J. L. Cardy, D. J. Scalapino M Nauenberg
  • Phys . Rev E
  • 1999

Relations between the Coulomb Gas Picture and Conformal Invariance of Two - Dimensional Critical Models

  • H. Saleur, J. B. Zuber
  • Conformal Field Theory
  • 1997

Critical behaviour of the two dimensional Potts model with a continuous number of states ; a finite size scaling analysis

  • P. Pouliot R. P. Langlands, Y. Saint-Aubin
  • Phys Rev . B

Similar Papers

Loading similar papers…