Homological algebra for affine Hecke algebras

  title={Homological algebra for affine Hecke algebras},
  author={Eric Opdam and Maarten Solleveld},
  • Eric Opdam, Maarten Solleveld
  • Published 2007
In this paper we study homological properties of modules over an affine Hecke algebra H. In particular we prove a comparison result for higher extensions of tempered modules when passing to the Schwartz algebra S, a certain topological completion of the affine Hecke algebra. The proof is self-contained and based on a direct construction of a bounded contraction of certain standard resolutions of H-modules. This construction applies for all positive parameters of the affine Hecke algebra. This… CONTINUE READING

From This Paper

Topics from this paper.
6 Citations
24 References
Similar Papers


Publications referenced by this paper.
Showing 1-10 of 24 references

Solleveld, Periodic cyclic homology of affine Hecke algebras, Ph.D

  • M. S. Sol
  • 2007

Embeddings of derived categories of bornological modules

  • R. Meyer
  • 2004

Opdam, “The Schwartz algebra of an affine Hecke algebra

  • E. M. DeOp P. Delorme
  • arXiv:math.RT/0312517,
  • 2004

Bornological versus topological analysis

  • R. Meyer
  • in metrizable spaces”,
  • 2003

Progrès récents sur la conjecture de Baum-Connes

  • G. Skandalis
  • Contribution de Vincent Lafforgue”, Astérisque
  • 2002

Euler-Poincaré pairings and elliptic representations of Weyl groups and p-adic groups

  • M. Reeder
  • Compos. Math
  • 2001

Similar Papers

Loading similar papers…