Homogenization of random convolution energies in heterogeneous and perforated domains

@article{Braides2019HomogenizationOR,
title={Homogenization of random convolution energies in heterogeneous and perforated domains},
author={A. Braides and A. Piatnitski},
journal={arXiv: Analysis of PDEs},
year={2019}
}

We prove a homogenization theorem for a class of quadratic convolution energies with random coefficients. Under suitably stated hypotheses of ergodicity and stationarity we prove that the $\Gamma$-limit of such energy is almost surely a deterministic quadratic Dirichlet-type integral functional, whose integrand can be characterized through an asymptotic formula. The proof of this characterization relies on results on the asymptotic behaviour of subadditive processes. The proof of the limit… Expand