Holographic Rényi entropies at finite coupling

  title={Holographic R{\'e}nyi entropies at finite coupling},
  author={Dami{\'a}n A. Galante and R. Myers},
  journal={Journal of High Energy Physics},
  • Damián A. Galante, R. Myers
  • Published 2013
  • Physics
  • Journal of High Energy Physics
  • A bstractWe compute Rényi entropies for a spherical entangling surface in four-dimensional $ \mathcal{N}=4 $ super-Yang-Mills at strong coupling using the AdS/CFT correspondence. Incorporating the effects of the leading α′ corrections to the low energy effective action of type IIB string theory, we calculate the leading corrections in inverse powers of the ’t Hooft coupling (and the number of colours). The results are compared with known weak coupling calculations. Setting the order of the R… CONTINUE READING
    29 Citations

    Figures from this paper

    Rényi entropy, stationarity, and entanglement of the conformal scalar
    • 43
    • PDF
    An Area-Law Prescription for Holographic Renyi Entropies
    • 21
    On holographic Rényi entropy in some modified theories of gravity
    • 9
    • PDF
    A universal feature of CFT Rényi entropy
    • 64
    • PDF
    Holographic studies of Einsteinian cubic gravity
    • 29
    • PDF
    Universality in the geometric dependence of Rényi entropy
    • 58
    • PDF
    On generalized gravitational entropy, squashed cones and holography
    • 83
    • PDF


    Entanglement Rényi entropies in conformal field theories and holography
    • 54
    • Highly Influential
    • PDF
    Holographic calculations of Rényi entropy
    • 166
    • PDF
    Entanglement Renyi entropies in holographic theories
    • 454
    • Highly Influential
    • PDF
    Rényi entropies for free field theories
    • 111
    • PDF
    Entanglement entropy in higher derivative holography
    • 76
    • PDF
    Holographic c-theorems in arbitrary dimensions
    • 457
    • PDF
    Holographic entanglement entropy in Lovelock gravities
    • 169
    • PDF
    Seeing a c-theorem with holography
    • 336
    • PDF