Hilbert schemes and W algebras
@article{Li2001HilbertSA, title={Hilbert schemes and W algebras}, author={Wei-Ping Li and Zhenbo Qin and Weiqiang Wang}, journal={arXiv: Algebraic Geometry}, year={2001} }
We construct geometrically the generating fields of a W algebra which acts irreducibly on the direct sum of the cohomology rings of the Hilbert schemes of n points on a projective surface for all n. We compute explicitly the commutators among a set of linear basis elements of the W algebra, and identify this algebra with a $W_{1+\infty}$-type algebra. A precise formula of certain Chern character operators, which is essential for the construction of the W algebra, is established in terms of the…
21 Citations
Ideals of the cohomology rings of Hilbert schemes and their applications
- Mathematics
- 2002
We study the ideals of the rational cohomology ring of the Hilbert scheme X (n) of n points on a smooth projective surface X. As an application, for a large class of smooth quasi-projective surfaces…
A ug 2 00 2 IDEALS OF THE COHOMOLOGY RINGS OF HILBERT SCHEMES AND THEIR APPLICATIONS
- Mathematics
- 2009
We study the ideals of the rational cohomology ring of the Hilbert scheme X [n] of n points on a smooth projective surface X . As an application, for a large class of smooth quasi-projective surfaces…
GENERATING SERIES IN THE COHOMOLOGY OF HILBERT SCHEMES OF POINTS ON SURFACES
- Mathematics
- 2006
In the study of the rational cohomology of Hilbert schemes of points on a smooth surface, it is particularly interesting to understand the characteristic classes of the tautological bundles and the…
Hilbert schemes and symmetric products: a dictionary
- Mathematics
- 2001
Given a closed complex manifold $X$ of even dimension, we develop a systematic (vertex) algebraic approach to study the rational orbifold cohomology rings $\orbsym$ of the symmetric products. We…
Hilbert schemes, Hecke algebras and the Calogero-Sutherland system
- Mathematics
- 2006
We describe the ring structure of the cohomology of the Hilbert scheme of points for a smooth surface X. When X is C 2 , this was done in [13, 21] by realising this ring as a degeneration of the…
On Okounkov's conjecture connecting Hilbert schemes of points and multiple q-zeta values
- Mathematics
- 2015
We compute the generating series for the intersection pairings between the total Chern classes of the tangent bundles of the Hilbert schemes of points on a smooth projective surface and the Chern…
K-Theory of Hilbert Schemes as a Formal Quantum Field Theory
- Mathematics
- 2018
We define a notion of formal quantum field theory and associate a formal quantum field theory to K-theoretical intersection theories on Hilbert schemes of points on algebraic surfaces. This enables…
Hilbert schemes of K3 surfaces, generalized Kummer, and cobordism classes of hyper-Kähler manifolds
- MathematicsPure and Applied Mathematics Quarterly
- 2022
We prove that the complex cobordism class of any hyper-Kähler manifold of dimension 2n is a unique combination with rational coefficients of classes of products of punctual Hilbert schemes of K3…
LEHN’S FORMULA IN CHOW AND CONJECTURES OF BEAUVILLE AND VOISIN
- MathematicsJournal of the Institute of Mathematics of Jussieu
- 2020
Abstract The Beauville–Voisin conjecture for a hyperkähler manifold $X$ states that the subring of the Chow ring $A^{\ast }(X)$ generated by divisor classes and Chern characters of the tangent bundle…
References
SHOWING 1-10 OF 19 REFERENCES
The cup product of the Hilbert scheme for K3 surfaces
- Mathematics
- 2000
To any graded Frobenius algebra A we associate a sequence of graded Frobenius algebras A^[n] in such a way that for any smooth projective surface X with trivial canonical divisor there is a canonical…
Vertex Operators and the Class Algebras of Symmetric Groups
- Mathematics
- 2001
AbstractWe exhibit a vertex operator that implements the multiplication by power sums of Jucys–Murphy elements in the centers of the group algebras of all symmetric groups simultaneously. The…
Lectures on Hilbert schemes of points on surfaces
- Mathematics
- 1999
Introduction Hilbert scheme of points Framed moduli space of torsion free sheaves on $\mathbb{P}^2$ Hyper-Kahler metric on $(\mathbb{C}^2)^{[n]}$ Resolution of simple singularities Poincare…
Hilbert schemes and symmetric products: a dictionary
- Mathematics
- 2001
Given a closed complex manifold $X$ of even dimension, we develop a systematic (vertex) algebraic approach to study the rational orbifold cohomology rings $\orbsym$ of the symmetric products. We…
Symmetric groups and the cup product on the cohomology of Hilbert schemes
- Mathematics
- 2000
Let C(Sn) be the Z-module of integer valued class functions on the symmetric group Sn. We introduce a graded version of the con- volution product on C(Sn) and show that there is a degree preserving…
Instantons and affine algebras I: The Hilbert scheme and vertex operators
- Mathematics
- 1995
This is the first in a series of papers which describe the action of an affine Lie algebra with central charge $n$ on the moduli space of $U(n)$-instantons on a four manifold $X$. This generalises…
Chern classes of tautological sheaves on Hilbert schemes of points on surfaces
- Mathematics
- 1999
Abstract. We give an algorithmic description of the action of the Chern classes of tautological bundles on the cohomology of Hilbert schemes of points on a smooth surface within the framework of…
Generators for the cohomology ring of Hilbert schemes of points on surfaces
- Mathematics
- 2000
Using the methods developed in [LQW], we obtain a second set of generators for the cohomology ring of the Hilbert scheme of points on an arbitrary smooth projective surface X over the field of…
Vertex Algebras and Algebraic Curves
- Mathematics
- 2000
Introduction Definition of vertex algebras Vertex algebras associated to Lie algebras Associativity and operator product expansion Applications of the operator product expansion Modules over vertex…
Heisenberg algebra and Hilbert schemes of points on projective surfaces
- Mathematics
- 1995
The purpose of this paper is to throw a bridge between two seemingly unrelated subjects. One is the Hilbert scheme of points on projective surfaces, which has been intensively studied by various…