# Hilbert Complexes with Mixed Boundary Conditions -- Part 1: De Rham Complex

@inproceedings{Pauly2021HilbertCW, title={Hilbert Complexes with Mixed Boundary Conditions -- Part 1: De Rham Complex}, author={D. Pauly and M. Schomburg}, year={2021} }

We show that the de Rham Hilbert complex with mixed boundary conditions on bounded strong Lipschitz domains is closed and compact. The crucial results are compact embeddings which follow by abstract arguments using functional analysis together with particular regular decompositions.

#### One Citation

Hilbert Complexes with Mixed Boundary Conditions -- Part 2: Elasticity Complex

- Mathematics, Physics
- 2021

We show that the elasticity Hilbert complex with mixed boundary conditions on bounded strong Lipschitz domains is closed and compact. The crucial results are compact embeddings which follow by… Expand

#### References

SHOWING 1-10 OF 24 REFERENCES

Weck's Selection Theorem: The Maxwell Compactness Property for Bounded Weak Lipschitz Domains with Mixed Boundary Conditions in Arbitrary Dimensions

- Mathematics, Physics
- 2018

It is proved that the space of differential forms with weak exterior and co-derivative, is compactly embedded into the space of square integrable differential forms. Mixed boundary conditions on weak… Expand

A Global div-curl-Lemma for Mixed Boundary Conditions in Weak Lipschitz Domains

- Mathematics
- 2020

We prove a global version of the so-called Open image in new window -\( \operatorname {\mathrm {curl}}\)-lemma, a crucial result for compensated compactness and in homogenization theory, for mixed… Expand

Complexes from complexes

- Mathematics, Computer Science
- ArXiv
- 2020

A systematic procedure is presented which, starting from well-understood differential complexes such as the de Rham complex, derives new complexes and deduces the properties of the new complexes from the old, and shows that the new complex has closed ranges and satisfies a Hodge decomposition, Poincare type inequalities, well-posed Hodge-Laplacian boundary value problems, regular decomposition and compactness properties on general Lipschitz domains. Expand

Solution theory

- variational formulations, and functional a posteriori error estimates for general first order systems with applications to electro-magneto-statics and more. Numer. Funct. Anal. Optim., 41(1):16– 112
- 2020

The Elasticity Complex: Compact Embeddings and Regular Decompositions

- Mathematics, Computer Science
- 2020

A simple technique is presented to prove the compact embeddings based on regular decompositions/potentials and Rellich's section theorem, which can be easily adapted to any Hilbert complex. Expand

The Index of Some Mixed Order Dirac-Type Operators and Generalised Dirichlet-Neumann Tensor Fields

- Mathematics, Physics
- 2020

We revisit a construction principle of Fredholm operators using Hilbert complexes of densely defined, closed linear operators and apply this to particular choices of differential operators. The… Expand

The divDiv-complex and applications to biharmonic equations

- Mathematics
- 2020

ABSTRACT It is shown that the first biharmonic boundary value problem on a topologically trivial domain in 3D is equivalent to three (consecutively to solve) second-order problems. This decomposition… Expand

On the Maxwell and Friedrichs/Poincaré constants in ND

- Mathematics, Physics
- 2017

We prove that for bounded and convex domains in arbitrary dimensions, the Maxwell constants are bounded from below and above by Friedrichs’ and Poincaré’s constants, respectively. Especially, the… Expand

On Closed and Exact Grad-grad- and div-Div-Complexes, Corresponding Compact Embeddings for Tensor Rotations, and a Related Decomposition Result for Biharmonic Problems in 3D

- Mathematics, Physics
- 2016

It is shown that the first biharmonic boundary value problem on a topologically trivial domain in 3D is equivalent to three (consecutively to solve) second-order problems. This decomposition result… Expand

Solution Theory, Variational Formulations, and Functional a Posteriori Error Estimates for General First Order Systems with Applications to Electro-Magneto-Statics and More

- Mathematics
- 2016

Abstract We prove a comprehensive solution theory using tools from functional analysis, show corresponding variational formulations, and present functional a posteriori error estimates for general… Expand