Higher Hopf Formulae for Homology via Galois Theory

Abstract

We use Janelidze's Categorical Galois Theory to extend Brown and Ellis's higher Hopf formulae for homology of groups to arbitrary semi-abelian monadic categories. Given such a category A and a chosen Birkhoff subcategory B of A, thus we describe the Barr-Beck derived functors of the reflector of A onto B in terms of centralization of higher extensions. In… (More)

Topics

  • Presentations referencing similar topics