# High energy harmonic maps and degeneration of minimal surfaces

@article{Ouyang2019HighEH, title={High energy harmonic maps and degeneration of minimal surfaces}, author={Charles Ouyang}, journal={arXiv: Differential Geometry}, year={2019} }

Let $S$ be a closed surface of genus $g \geq 2$ and let $\rho$ be a maximal $\mathrm{PSL}(2, \mathbb{R}) \times \mathrm{PSL}(2, \mathbb{R})$ surface group representation. By a result of Schoen, there is a unique $\rho$-equivariant minimal surface $\widetilde{\Sigma}$ in $\mathbb{H}^{2} \times \mathbb{H}^{2}$. We study the induced metrics on these minimal surfaces and prove the limits are precisely mixed structures. In the second half of the paper, we provide a geometric interpretation: the…

## 6 Citations

### Length spectrum compactification of the $\mathrm{SO}_{0}(2,3)$-Hitchin component

- Mathematics
- 2020

We find a compactification of the $\mathrm{SO}_{0}(2,3)$-Hitchin component by studying the degeneration of the induced metric on the unique equivariant maximal surface in the 4-dimensional…

### Limits of Blaschke metrics

- MathematicsDuke Mathematical Journal
- 2021

We find a compactification of the $\mathrm{SL}(3,\mathbb{R})$-Hitchin component by studying the degeneration of the Blaschke metrics on the associated equivariant affine spheres. In the process, we…

### Riemannian metrics on the moduli space of GHMC anti-de Sitter structures

- MathematicsGeometriae Dedicata
- 2020

In this short note we explain how to adapt the construction of two Riemannian metrics on the $\mathrm{SL}(3,\mathbb{R})$-Hitchin component to the deformation space of globally hyperbolic anti-de…

### A closed ball compactification of a maximal component via cores of trees

- Mathematics
- 2021

We show that, in the character variety of surface group representations into the Lie group PSL(2,R) × PSL(2,R), the compactification of the maximal component introduced by the second author is a…

### Boundary of the Gothen components

- Mathematics
- 2021

In this short note we describe an interesting new phenomenon about the Sp(4,R)-character variety. Precisely, we show that the Hitchin component and all Gothen components share the same boundary in…

## References

SHOWING 1-10 OF 47 REFERENCES

### On univalent harmonic maps between surfaces

- Mathematics
- 1978

Hence the energy defines a functional on the space of Lipshitz maps between M and M'. Critical points of this functional are called harmonic maps. These maps were studied by Bochner, Morrey, Rauch,…

### Cyclic surfaces and Hitchin components in rank 2

- Mathematics
- 2014

We prove that given a Hitchin representation in a real split rank 2 group $\mathsf G_0$, there exists a unique equivariant minimal surface in the corresponding symmetric space. As a corollary, we…

### Elliptic Partial Differential Equations of Second Order

- Mathematics
- 1997

We study in this chapter a class of partial differential equations that generalize and are to a large extent represented by Laplace’s equation. These are the elliptic partial differential equations…

### Character varieties and harmonic maps to R-trees

- Mathematics
- 1998

We show that the Korevaar-Schoen limit of the sequence of equivariant harmonic maps corresponding to a sequence of irreducible SL2(C) representations of the fundamental group of a compact Riemannian…

### Sobolev spaces and harmonic maps for metric space targets

- Mathematics
- 1993

When one studies variational problems for maps between Riemannian manifolds one must consider spaces which we denote Vr'(r2,X). Here ft is a compact domain in a Riemannian manifold, X is a second…

### Minimal surfaces and particles in 3-manifolds

- Mathematics
- 2007

We consider 3-dimensional anti-de Sitter manifolds with conical singularities along time-like lines, which is what in the physics literature is known as manifolds with particles. We show that the…

### On harmonic maps

- Mathematics
- 1989

This work highlights the key questions of existence, uniqueness and regularity of harmonic maps between given manifolds, and surveys some of the main methods of global analysis for answering these questions.

### Extremal length geometry of teichmüller space

- Mathematics
- 1991

Assume τ is a point in the Teichmuller space of a Riemann surface which is compact or obtainable from a compact surface by deleting a finite number of punctures. Let be extermal lengths of two…