Hierarchies in Dependence Logic

  title={Hierarchies in Dependence Logic},
  author={Arnaud Durand and Juha Kontinen},
  journal={ACM Trans. Comput. Log.},
We study fragments <i>D</i>(<i>k</i>∀) and <i>D</i>(<i>k</i>-dep) of dependence logic defined either by restricting the number <i>k</i> of universal quantifiers or the width of dependence atoms in formulas. We find the sublogics of existential second-order logic corresponding to these fragments of dependence logic. We also show that, for any fixed signature, the fragments <i>D</i>(<i>k</i>∀) give rise to an infinite hierarchy with respect to expressive power. On the other hand, for the… CONTINUE READING

From This Paper

Topics from this paper.


Publications referenced by this paper.
Showing 1-5 of 5 references

Σ11-formulae on finite structures

  • Miklos Ajtai
  • Ann. Pure Appl
  • 1983
Highly Influential
6 Excerpts

11 - formulae on finite structures

  • M. AJTAI
  • Ann . Pure Appl . Logic
  • 1983
Highly Influential
1 Excerpt

Similar Papers

Loading similar papers…