• Corpus ID: 250243733

Hidden and detectable squeezing from micro-resonators

@inproceedings{Gouzien2022HiddenAD,
  title={Hidden and detectable squeezing from micro-resonators},
  author={'Elie Gouzien and Laurent Labont'e and Alessandro Zavatta and Jean Etesse and S{\'e}bastien Tanzilli and Virginia D'Auria and Giuseppe Patera},
  year={2022}
}
In the context of quantum integrated photonics, this work investigates the quantum properties of multimode light generated by silicon and silicon nitride micro-resonators pumped in pulsed regime. The developed theoretical model, performed in terms of the morphing supermodes, provides a comprehensive description of the generated quantum states. Remarkably, it shows that a full measurement of states carrying optimal squeezing levels is not accessible to standard homodyne detection, thus leaving… 

Figures from this paper

References

SHOWING 1-10 OF 18 REFERENCES

Optique quantique multimode pour le traitement de l'information quantique

Cette these etudie l’optique quantique multimode, aussi bien du point de vue de la generation que celui de la detection. Elle s’articule autour de trois volets. Nous etudions la generation de lumiere

Phd by thesis

  • R. Lathe
  • Geography, Environmental Science
    Nature
  • 1988
Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most

Optical Microring Resonators (CRC, 2017)

  • 2017

Phys

  • Rev. A 76, 010302R
  • 2007

Phys

  • Rev. A 83, 050302R
  • 2011

Rn(t )] = iΩm,nδ(t − t ), with Ωm,n the elements of the symplectic form Ω (see [30]). In Fourier domain

    Any matrix-valued transformation S(ω) is ω-symplectic (see [19]) if it is a smooth 2N × 2N complex matrixvalued function of the parameter ω -in our case the analysis frequency -such that

      N -mode symplectic form and I the N × N matrix

        and M

        • Lipson, Physical Review Applied 3
        • 2015

        Phys

        • Rev. A 98, 062301
        • 2018