Hermite Scattered Data Fitting by the Penalized Least Squares Method

Given a set of scattered data with derivative values. If the data is noisy or there is an extremely large number of data, we use an extension of the penalized least squares method of von Golitschek and Schumaker [Serdica, 18 (2002), pp.1001-1020] to fit the data. We show that the extension of the penalized least squares method produces a unique spline to… (More)