Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation.


To determine the hemodynamic effects of exogenous nitric oxide (NO) on the immature pulmonary circulation, we studied the response to NO inhalation in 19 mechanically ventilated late-gestation ovine fetuses in three separate protocols. In protocol 1, we examined the relative effects of 1) mechanical ventilation while maintaining fetal arterial O2 tension (PaO2) constant [fractional inspired O2 concentration (FIO2) less than 0.10)], 2) NO inhalation [5-20 parts per million (ppm)] at fetal PaO2, and 3) high FIO2 (1.00) (n = 7). NO increased left pulmonary artery blood flow (Qlpa) in a dose-dependent fashion, from 254 +/- 62 (baseline) to 398 +/- 49 ml/min with 20 ppm NO (P less than 0.001). The response of Qlpa to a FIO2 equal to 1.00 was not different from NO alone. Systemic arterial pressure was not affected by NO. In protocol 2 we studied the effects of prolonged NO inhalation (2 h, 20 ppm) during mechanical ventilation with low FIO2 (n = 4). NO increased Qlpa from 267 +/- 92 to 468 +/- 75 ml/min at 10 min of NO inhalation (P less than 0.001). The increase in Qlpa was sustained during the entire 2-h study period. In protocol 3 we measured left ventricular output (LVO), systemic vascular resistance (SVR), and ductus arteriosus shunting using radiolabeled microspheres (n = 8) during baseline mechanical ventilation and 20 ppm NO inhalation. LVO and SVR were not significantly different in the two study periods; however, the percentage of LVO that reached the lungs (predominantly left-to-right shunting across the ductus arteriosus) increased from 18 +/- 5 to 43 +/- 4% during NO inhalation.(ABSTRACT TRUNCATED AT 250 WORDS)


Citations per Year

807 Citations

Semantic Scholar estimates that this publication has 807 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Kinsella1992HemodynamicEO, title={Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation.}, author={John Kinsella and J A McQueston and Adam A. Rosenberg and Steven H Abman}, journal={The American journal of physiology}, year={1992}, volume={263 3 Pt 2}, pages={H875-80} }