Heights of roots of polynomials with odd coefficients

@article{Garza2010HeightsOR,
  title={Heights of roots of polynomials with odd coefficients},
  author={John Garza and M. I. M. Ishak and Michael J. Mossinghoff and Christopher G. Pinner and Benjamin Wiles},
  journal={Journal de Theorie des Nombres de Bordeaux},
  year={2010},
  volume={22},
  pages={369-381}
}
Soit α un zero d'un polynome de degre n a coefficients impairs qui n'est pas une racine de l'unite. Nous montrons que la hauteur de α satisfait h (α,) ≥ 0.4278/n+1. Plus generalement, nous obtenons des bornes dans le cas ou chaque coefficient est congru a 1 modulo m, avec m > 2. 

A SHORT NOTE ON THE MAHLER MEASURE AND LEHMER'S CONJECTURE

Let k be an algebraic number field and ( ) x F be a polynomial in [ ]. x k In this short paper, we shall consider the problem of the equivalence between best possible upper bounds for the number of

A proof of the Conjecture of Lehmer and of the Conjecture of Schinzel-Zassenhaus

The conjecture of Lehmer is proved to be true. The proof mainly relies upon: (i) the properties of the Parry Upper functions f α (z) associated with the dynamical zeta functions ζ α (z) of the

Average Mahler’s measure and Lp norms of unimodular polynomials

A polynomial f 2 CTzU is unimodular if all its coefficients have unit modulus. Let Un denote the set of unimodular polynomials of degree n 1, and let U n denote the subset of reciprocal unimodular

References

SHOWING 1-10 OF 17 REFERENCES

Lehmer's problem for polynomials with odd coefficients

We prove that if f(x) = YlkZo akxk is a polynomial with no cyclotomic factors whose coefficients satisfy ak = 1 mod 2 for 0 2. We also characterize the polynomials that appear as the noncyclotomic

Auxiliary polynomials for some problems regarding Mahler's measure

An iterative method of constructing some favorable auxiliary polynomials is described, which improves a lower bound on Mahler’s measure of a polynomial with no cyclotomic factors whose coefficients are all congruent to 1 modulo m for some integer m ≥ 2.

E

  • Dobrowolski & M.J. Mossinghoff, Lehmer’s problem for polynomials with odd coefficients, Ann. of Math. (2) 166
  • 2007

Number theory

  • H. Hasse
  • Mathematics, Computer Science
    Classics in mathematics
  • 2002

Einige bemerkungen uber die darstellung ganzer zahlen durch binare kubische farmen mit positiver diskrimante

  • Acta Math. 75
  • 1943

Des equations indéterminées x2+x+1 = yn et x2+x+1 = 3yn

  • Norsk Matematisk Forening, Skr. (1) no. 2
  • 1921

E-mail address: mimossinghoff@davidson.edu Department of Mathematics

  • E-mail address: mimossinghoff@davidson.edu Department of Mathematics

E-mail address: mimishak@math.ksu.edu Department of Mathematics

  • E-mail address: mimishak@math.ksu.edu Department of Mathematics