Heights of roots of polynomials with odd coefficients

@article{Garza2010HeightsOR,
  title={Heights of roots of polynomials with odd coefficients},
  author={John Garza and M. I. M. Ishak and Michael J. Mossinghoff and Christopher G. Pinner and Benjamin Wiles},
  journal={Journal de Theorie des Nombres de Bordeaux},
  year={2010},
  volume={22},
  pages={369-381}
}
Soit α un zero d'un polynome de degre n a coefficients impairs qui n'est pas une racine de l'unite. Nous montrons que la hauteur de α satisfait h (α,) ≥ 0.4278/n+1. Plus generalement, nous obtenons des bornes dans le cas ou chaque coefficient est congru a 1 modulo m, avec m > 2. 

A SHORT NOTE ON THE MAHLER MEASURE AND LEHMER'S CONJECTURE

Let k be an algebraic number field and ( ) x F be a polynomial in [ ]. x k In this short paper, we shall consider the problem of the equivalence between best possible upper bounds for the number of

A proof of the Conjecture of Lehmer and of the Conjecture of Schinzel-Zassenhaus

The conjecture of Lehmer is proved to be true. The proof mainly relies upon: (i) the properties of the Parry Upper functions f α (z) associated with the dynamical zeta functions ζ α (z) of the

Average Mahler’s measure and Lp norms of unimodular polynomials

A polynomial f 2 CTzU is unimodular if all its coefficients have unit modulus. Let Un denote the set of unimodular polynomials of degree n 1, and let U n denote the subset of reciprocal unimodular

References

SHOWING 1-10 OF 17 REFERENCES

Lehmer's problem for polynomials with odd coefficients

We prove that if f(x) = YlkZo akxk is a polynomial with no cyclotomic factors whose coefficients satisfy ak = 1 mod 2 for 0 2. We also characterize the polynomials that appear as the noncyclotomic

Auxiliary polynomials for some problems regarding Mahler's measure

TLDR
An iterative method of constructing some favorable auxiliary polynomials is described, which improves a lower bound on Mahler’s measure of a polynomial with no cyclotomic factors whose coefficients are all congruent to 1 modulo m for some integer m ≥ 2.

E

  • Dobrowolski & M.J. Mossinghoff, Lehmer’s problem for polynomials with odd coefficients, Ann. of Math. (2) 166
  • 2007

Number theory

  • H. Hasse
  • Mathematics, Computer Science
    Classics in mathematics
  • 2002

Einige bemerkungen uber die darstellung ganzer zahlen durch binare kubische farmen mit positiver diskrimante

  • Acta Math. 75
  • 1943

Des equations indéterminées x2+x+1 = yn et x2+x+1 = 3yn

  • Norsk Matematisk Forening, Skr. (1) no. 2
  • 1921

E-mail address: mimossinghoff@davidson.edu Department of Mathematics

  • E-mail address: mimossinghoff@davidson.edu Department of Mathematics

E-mail address: mimishak@math.ksu.edu Department of Mathematics

  • E-mail address: mimishak@math.ksu.edu Department of Mathematics