Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles

@inproceedings{Levin2012HeckeTO,
  title={Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles},
  author={Andrey M. Levin and Mikhail A. Olshanetsky and Andrey V. Smirnov and Andrei V. Zotov},
  year={2012}
}
We describe new families of the Knizhnik–Zamolodchikov–Bernard (KZB) equations related to the WZW-theory corresponding to the adjoint G-bundles of different topological types over complex curves Σg,n of genus g with n marked points. The bundles are defined by their characteristic classes – elements of H(Σg,n,Z(G)), where Z(G) is a center of the simple complex Lie group G. The KZB equations are the horizontality condition for the projectively flat connection (the KZB connection) defined on the… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 77 REFERENCES

Characteristic classes and Hitchin systems

  • A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov
  • General construction, Comm. Math. Phys
  • 2012
Highly Influential
10 Excerpts

Spectra of Wess–Zumino–Witten models with arbitrary simple groups

  • G. Felder, K. Gawedzki, A. Kupiainen
  • Comm. Math. Phys
  • 1988
Highly Influential
4 Excerpts

Calogero–Moser systems for simple Lie groups and characteristic classes of bundles

  • A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov
  • J. Geom. Phys
  • 2012
1 Excerpt

Characteristic classes and Hitchin systems . General construction

  • M. LevinA., A. OlshanetskyM., V. SmirnovA., V. ZotovA.
  • Comm . Math . Phys .
  • 2012

Monopole solutions to the Bogomolny equation as three - dimensional generalizations of the Kronecker series , Theoret

  • K. Bulycheva
  • and Math . Phys .
  • 2012

Monopole solutions to the Bogomolny equation as three-dimensional generalizations of the Kronecker series

  • K. Bulycheva
  • Theoret. and Math. Phys
  • 2012
1 Excerpt

Quantum Painlevé–Calogero correspondence

  • A. V. Zabrodin, A. V. Zotov
  • J. Math. Phys
  • 2012
1 Excerpt

Quantum Painlevé–Calogero correspondence for Painlevé VI

  • A. V. Zabrodin, A. V. Zotov
  • J. Math. Phys
  • 2012
1 Excerpt

Similar Papers

Loading similar papers…