Hausdorff dimension of limit sets for projective Anosov representations
@article{Glorieux2019HausdorffDO, title={Hausdorff dimension of limit sets for projective Anosov representations}, author={Olivier Glorieux and Daniel Monclair and Nicolas Tholozan}, journal={arXiv: Differential Geometry}, year={2019} }
We study the relation between critical exponents and Hausdorff dimensions of limit sets for projective Anosov representations. We prove that the Hausdorff dimension of the symmetric limit set in $\mathbf{P}(\mathbb{R}^{n}) \times \mathbf{P}({\mathbb{R}^{n}}^*)$ is bounded between two critical exponents associated respectively to a highest weight and a simple root.
Figures from this paper
9 Citations
Entropy rigidity for cusped Hitchin representations
- Mathematics
- 2022
We establish an entropy rigidity theorem for Hitchin representations of all geometrically finite Fuchsian groups which generalizes a theorem of Potrie and Sambarino for Hitchin representations of…
Patterson-Sullivan theory for Anosov subgroups
- Mathematics
- 2019
Author(s): Dey, Subhadip; Kapovich, Michael | Abstract: We extend several notions and results from the classical Patterson-Sullivan theory to the setting of Anosov subgroups of higher rank semisimple…
Hessian of Hausdorff dimension on purely imaginary directions
- MathematicsBulletin of the London Mathematical Society
- 2022
Bridgeman–Taylor (Math. Ann. 341 (2008), 927–943) and McMullen (Invent. Math. 173 (2008), 365–425) showed that the Weil–Petersson metric on Teichmüller space can be realized by looking at the…
Growth of quadratic forms under Anosov subgroups
- Mathematics
- 2020
Let $\rho:\Gamma\rightarrow PSL_d(\mathbb{R})$ be a Zariski dense Anosov representation (in the full flag variety of $PSL_d(\mathbb{R})$), where $d\geq 3$. Let also $0<p<d$ be an integer. To each…
TENT PROPERTY AND MANHATTAN METRICS FOR SELF-JOININGS OF HYPERBOLIC MANIFOLDS
- Mathematics
- 2021
Let n ≥ 2 and ρ1, ρ2 : ∆ → SO◦(n, 1) be a pair of nonelementary convex cocompact non-conjugate representations of a finitely generated group ∆. For Γ := (ρ1 × ρ2)(∆) < SO◦(n, 1)× SO◦(n, 1) and its…
Tent property and directional limit sets for self-joinings of hyperbolic manifolds
- Mathematics
- 2021
(1) Let Γ = (ρ1 × ρ2)(∆) where ρ1, ρ2 : ∆ → SO (n, 1) are convex cocompact representations of a finitely generated group ∆. We provide a sharp pointwise bound on the growth indicator function ψΓ by a…
Anti-de Sitter geometry and Teichm\"uller theory
- Mathematics
- 2020
The aim of these notes is to provide an introduction to Anti-de Sitter geometry, with special emphasis on dimension three and on the relations with Teichmüller theory, whose study has been initiated…
Anti-de Sitter Geometry and Teichmüller Theory
- Mathematics
- 2020
The aim of these notes is to provide an introduction to Anti-de Sitter geometry, with special emphasis on dimension three and on the relations with Teichmuller theory, whose study has been initiated…
HAUSDORFF DIMENSIONS AND CRITICAL EXPONENTS FOR PAIRS OF HYPERBOLIC MANIFOLDS
- Mathematics
- 2021
Let n ≥ 2 and ρ1, ρ2 : ∆ → SO◦(n, 1) be a pair of nonelementary convex cocompact representations of a finitely generated group ∆. Let Γ := (ρ1 × ρ2)(∆) < SO◦(n, 1) × SO◦(n, 1) and 0 < δ ≤ n− 1 denote…
References
SHOWING 1-10 OF 32 REFERENCES
Critical exponent and Hausdorff dimension for quasi-Fuchsian AdS manifolds
- Mathematics
- 2016
The aim of this article is to understand the geometry of limit sets in Anti-de Sitter space. We focus on a particular type of subgroups of $\mathrm{SO}(2,n)$ called quasi-Fuchsian groups (which are…
Quantitative properties of convex representations
- Mathematics
- 2011
Letbe a discrete subgroup of PGL.d; R/. Fix a norm kk on R d and letN� .t/ be the number of elements inwhose operator norm ist. In this article we prove an asymptotic for the growth ofN� .t/ whent !1…
Measures on the geometric limit set in higher rank symmetric spaces
- Mathematics
- 2004
For a discrete isometry group of a higher rank symmetrie space we present certain families of measures on its geometrie limit set. We further introducé a notion of Hausdorff measure and give an…
A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings
- MathematicsGeometry & Topology
- 2018
We prove a Morse Lemma for coarsely regular quasigeodesics in nonpositively curved symmetric spaces and euclidean buildings X. The main application is a simpler coarse geometric characterization of…
Dynamics and entropies of Hilbert metrics
- Mathematics
- 2011
We study the geodesic flow of a Hilbert geometry defined by a strictly convex open set with $C^1$ boundary. We get interested in its local behaviour around one specific orbit as well as its global…
Eigenvalues and entropy of a Hitchin representation
- Mathematics
- 2014
We show that the critical exponent of a representation $$\rho $$ρ in the Hitchin component of $${{\mathrm{PSL}}}(d,\mathbb {R})$$PSL(d,R) is bounded above, the least upper bound being attained only…
Anosov representations: domains of discontinuity and applications
- Mathematics
- 2012
The notion of Anosov representations has been introduced by Labourie in his study of the Hitchin component for SL(n,R). Subsequently, Anosov representations have been studied mainly for surface…
Anosov subgroups: dynamical and geometric characterizations
- Mathematics
- 2017
We study infinite covolume discrete subgroups of higher rank semisimple Lie groups, motivated by understanding basic properties of Anosov subgroups from various viewpoints (geometric, coarse…
Entropies of compact strictly convex projective manifolds
- Mathematics
- 2009
Let M be a compact manifold of dimension n with a strictly convex projective structure. We consider the geodesic flow of the Hilbert metric on it, which is known to be Anosov. We prove that its…