Harnessing nanomedicine for therapeutic intervention in glioblastoma.


INTRODUCTION Glioblastoma is a type of brain cancer arises from glial cells. Glioblastoma multiforme (GBM), a subtype of glioblastoma, is the most common and most aggressive primary brain tumor. Currently, GBM therapy includes surgery and post-operative high-doses of radiation and chemotherapy. This therapeutic strategy has a limited contribution in extending the survival rate of GBM patients. Areas covered: Herein, we focus on harnessing nanoscale drug delivery strategies to treat brain malignancies. Specifically, we briefly discuss the challenges facing GBM therapy such as restricted passage across the blood-brain barrier (BBB) and low enhanced permeability and retention effect. Next, we describe different pathways to address these challenges. Finally, we discuss the field of nanomedicine, which emerged as a promising platform for drug delivery to brain malignancies. Expert opinion: Countless strategies have been applied in preclinical and clinical settings to treat GBM. Among them is the use of different types of nanoparticles (NPs) and viruses with different approaches to cross or bypass the BBB. We suggest here a paradigm shift in thinking about crossing the BBB and tumor penetration as fundamental issues that need to be address in order to improve the therapeutic outcome in GBM.

Cite this paper

@article{Gutkin2016HarnessingNF, title={Harnessing nanomedicine for therapeutic intervention in glioblastoma.}, author={Anna Gutkin and Zvi R. Cohen and Dan Peer}, journal={Expert opinion on drug delivery}, year={2016}, volume={13 11}, pages={1573-1582} }