Hamiltonicity of regular 2-connected graphs


Let G be a k-regular 2-connected graph of order n. Jackson proved that G is hamiltonian if n 5 3k. Zhu and Li showed that the upper bound 3k on n can be relaxed to q k if G is 3-connected and k 2 63. We improve both results by showing that G is hamiltonian if n 5 gk 7 and G does not belong to a restricted class 3 of nonhamiltonian graphs of connectivity 2… (More)
DOI: 10.1002/(SICI)1097-0118(199606)22:2%3C105::AID-JGT2%3E3.0.CO;2-R


Figures and Tables

Sorry, we couldn't extract any figures or tables for this paper.