Hairs for the Complex Exponential Family

@inproceedings{Bodeln1999HairsFT,
  title={Hairs for the Complex Exponential Family},
  author={Clara Bodel{\'o}n and Robert L. Devaney and Michael Hayes and Gareth O. Roberts and Lisa R. Goldberg and John H. Hubbard},
  year={1999}
}
In this paper we consider both the dynamical and parameter planes for the complex exponential family Eλ(z) = λez where the parameter λ is complex. We show that there are infinitely many curves or “hairs” in the dynamical plane that contain points whose orbits underEλ tend to infinity and hence are in the Julia set. We also show that there are similar hairs in the λ-plane. In this case, the hairs contain λ-values for which the orbit of 0 tends to infinity under the corresponding exponential. In… CONTINUE READING
Highly Cited
This paper has 33 citations. REVIEW CITATIONS
22 Citations
18 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 18 references

Dynamics of Exp(z),

  • R. L. Devaney, M. Krych
  • Ergodic Th. Dyn. Syst
  • 1984
Highly Influential
7 Excerpts

Itération des Polynômes quadratiques complexes,

  • A. Douady, J. Hubbard
  • C.R. Acad. Sci. Paris t. 29,
  • 1982
Highly Influential
4 Excerpts

The geometry of Julia sets,

  • J. Aarts, L. Oversteegen
  • Trans. Amer. Math. Soc
  • 1993
Highly Influential
4 Excerpts

Misiurewicz points for complex exponentials,

  • R. L. Devaney, X. Jarque
  • Int. J. Bifurcation and Chaos
  • 1997
2 Excerpts

Limiting dynamics for the complex standard family,

  • N. Fagella
  • Int. J. Bifurcation and Chaos
  • 1995

Complex Dynamics (Springer-Verlag, NY)

  • L. Carleson, T. Gamelin
  • 1993
1 Excerpt

Dynamical properties of some classes of entire functions,

  • A. Eremenko, Lyubich, M. Yu
  • Ann. Inst. Fourier (Grenoble)
  • 1992

Dynamics of entire functions near the essential singularity,”Ergodic

  • R. L. Devaney, F. Tangerman
  • Th. Dyn. Syst
  • 1986
2 Excerpts

Finiteness theorem for a dynamical class of entire functions,

  • L. R. Goldberg, Keen, A L.
  • Ergodic Th. Dyn. Syst
  • 1986

Quasiconformal maps and dynamical systems I, Solutions of the Fatou–Julia problem on wandering domains,

  • D. Sullivan
  • Ann. Math
  • 1985

Similar Papers

Loading similar papers…