# Haantjes Algebras of the Lagrange Top

@article{Tondo2018HaantjesAO, title={Haantjes Algebras of the Lagrange Top}, author={G. Tondo}, journal={Theoretical and Mathematical Physics}, year={2018}, volume={196}, pages={1366-1379} }

We study a symplectic-Haantjes manifold and a Poisson–Haantjes manifold for the Lagrange top and compute a set of Darboux–Haantjes coordinates. Such coordinates are separation variables for the associated Hamilton–Jacobi equation.

#### 5 Citations

Haantjes algebras and diagonalization

- Mathematics, Physics
- 2021

Abstract We introduce the notion of Haantjes algebra: It consists of an assignment of a family of operator fields on a differentiable manifold, each of them with vanishing Haantjes torsion. They are… Expand

A New Class of Generalized Haantjes Tensors and Nilpotency

- Mathematics
- 2018

We propose a new infinite class of generalized binary tensor fields. The first representative of this class is the known Fr\"olicher--Nijenhuis bracket. Also, this new family of tensors reduces to… Expand

Higher Haantjes Brackets and Integrability

- Mathematics
- 2018

We propose a new, infinite class of brackets generalizing the Frölicher– Nijenhuis bracket. This class can be reduced to a family of generalized Nijenhuis torsions recently introduced. In particular,… Expand

Classical Multiseparable Hamiltonian Systems, Superintegrability and Haantjes Geometry

- Physics, Mathematics
- 2020

We show that the theory of classical Hamiltonian systems admitting separation variables can be formulated in the context of (ω,H ) structures. They are essentially symplectic manifolds endowed with a… Expand

A New family of higher-order Generalized Haantjes Tensors, Nilpotency and Integrability

- Mathematics
- 2018

We propose a new infinite class of generalized binary tensor fields, whose first representative of is the known Frolicher--Nijenhuis bracket. This new family of tensors reduces to the generalized… Expand

#### References

SHOWING 1-10 OF 34 REFERENCES

Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems

- Mathematics, Physics
- 2016

In the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stackel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As… Expand

On bi-Hamiltonian geometry of the Lagrange top

- Mathematics, Physics
- 2008

We consider three different incompatible bi-Hamiltonian structures for the Lagrange top, which have the same foliation by symplectic leaves. These bivectors may be associated with different… Expand

On a Poisson reduction for Gel'fand-Zakharevich manifolds ∗

- Mathematics, Physics
- 2002

Abstract We formulate and discuss a reduction theorem for Poisson pencils associated with a class of integrable systems, defined on bi-Hamiltonian manifolds, recently studied by Gel'fand and… Expand

Haantjes manifolds and Veselov systems

- Mathematics, Physics
- 2015

We propose a new geometric interpretation of the solutions of the Witten–Dijkgraaf–Verlinde–Verlinde equations formerly found by A. P. Veselov.

Beyond recursion operators

- Mathematics
- 2019

We briefly recall the history of the Nijenhuis torsion of (1, 1)-tensors on manifolds and of the lesser-known Haantjes torsion. We then show how the Haantjes manifolds of Magri and the symplectic… Expand

Reduction of Poisson manifolds

- Mathematics
- 1986

Reduction in the category of Poisson manifolds is defined and some basic properties are derived. The context is chosen to include the usual theorems on reduction of symplectic manifolds, as well as… Expand

Recursion Operators and Frobenius Manifolds

- Mathematics, Physics
- 2012

In this note I exhibit a "discrete homotopy" which joins the category of F-manifolds to the category of Poisson-Nijenhuis manifolds, passing through the category of Frobenius manifolds.

Separation of Variables in Multi-Hamiltonian Systems: An Application to the Lagrange Top

- Mathematics, Physics
- 2003

Starting from the tri-Hamiltonian formulation of the Lagrange top in a six-dimensional phase space, we discuss the reduction of the vector field and of the Poisson tensors. We show explicitly that… Expand

Bi-Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables

- Mathematics, Physics
- 1999

Abstract We discuss from a bi-Hamiltonian point of view the Hamilton-Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi-bi-Hamiltonian… Expand

Haantjes Manifolds of Classical Integrable Systems

- Mathematics
- 2014

A general theory of classical integrable systems is proposed, based on the geometry of the Haantjes tensor. We introduce the class of symplectic-Haantjes manifolds (or $\omega \mathcal{H}$ manifold),… Expand