Grupos ortogonales sobre cuerpos de caracter\'{i}stica positiva

  title={Grupos ortogonales sobre cuerpos de caracter\'\{i\}stica positiva},
  author={Robin Zhang},
Resumen. Esta exposición examina la teoŕıa de los grupos ortogonales y sus subgrupos sobre cuerpos de caracteŕıstica positiva, que recientemente se han utilizado como una herramienta importante en el estudio de las formas automórficas y la funcionalidad de Langlands. Presentamos la clasificación de grupos ortogonales sobre un cuerpo finito F utilizando la teoŕıa de formas bilineales y formas cuadráticas en caracteŕıstica positiva. Usando el determinante y la norma del espinor cuando la caracte… 



Langlands functoriality conjecture for ${\bf SO}_{2n}^*$ in positive characteristic

In this article we are concerned with the Langlands functoriality conjecture. Cogdell, Kim, Piatetski-Shapiro and Shahidi proved functioriality conjecture in the case of a globally generic cuspidal

On the restriction of Deligne-Lusztig characters

results of Hagedorn gave me the courage to attempt such calculations for general groups and to obtain closed multiplicity formulas for orthogonal groups. It is a pleasure to thank Dick Gross for

Functoriality for the classical groups over function fields

Langlands' functoriality for generic representations from the split classical groups to an appropriate GL N is established. The functorial lift or transfer to GL N is obtained with the help of a

From Laplace to Langlands via representations of orthogonal groups

In the late 1960s, Robert Langlands proposed a new and far-reaching connection between the representation theory of Lie groups over real and p-adic fields, and the structure of the Galois groups of

Rationality and holomorphy of Langlands–Shahidi L-functions over function fields

  • L. Lomelí
  • Mathematics
    Mathematische Zeitschrift
  • 2018
We prove that all Langlands–Shahidi automorphic L-functions over function fields are rational; after twists by highly ramified characters they become polynomials; and, if $$\pi $$π is a globally

The geometry of the classical groups

classical groups Download eBook pdf epub tuebl mobi. A short bibliography on classical groups QMUL Maths. Geometry of G P V. handbook of computational group theory Download eBook. Classical Groups


In this paper V will be a nondefective quadratic space over a field of characteristic 2, O(V) will be the orthogonal group of V, 0+(V) will be the group of rotations, tl(V) will be the commutator

4-dimensional Orthogonal Groups over Algebraic Number Fields.

Let K be a field of characteristic Φ 2, V a finite dimensional vector space over K which.possesses a non-degenerate Symmetrie scalar product (Artin [1], Chapter III). Let 0(V) denote the orthogonal

Pseudo-discriminant and Dickson invariant

1. Let E be a vector space of finite dimension over a field K. To a bilinear symmetric form f(x, y) defined over ExE is attached classically the notion of discriminant: it is an element of K which is

Finite Simple Groups

I wish to thank the organizers of this symposium for inviting me to speak and enabling me to discuss some consequences of the classification of the finite simple groups.