Greed and Majorization

@inproceedings{Parker1997GreedAM,
  title={Greed and Majorization},
  author={Douglas Stott Parker and Prasad Ram},
  year={1997}
}
We present a straightforward linear algebraic model of greed, based only on extensions of classical majorization and convexity theory. This gives an alternative to other models of greedy-solvable problems such as matroids, greedoids, submodular functions, etc., and it is able to express established examples of greedy-solvable optimization problems that they cannot. The linear algebraic approach is also much closer in spirit to established practice in operations research and numerical… CONTINUE READING
4 Citations
17 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 17 references

Sur quelques applications des fonctions convexes et concaves au sens de I

  • A. M. Ostrowski
  • Schur. J. Math. Pures Appl., 31(9):253{292
  • 1952
Highly Influential
3 Excerpts

Majorization on Sequences

  • D. S. Parker, Prasad Ram
  • Technical report, UCLA Computer Science Dept.,
  • 1994
5 Excerpts

Convex Functions, Partial Orderings, and Statistical Appli- cations

  • J. E. Pe cari c, F. Proschan, Y. L. Tong
  • 1992
1 Excerpt

L

  • B. Korte
  • Lov asz, and R. Schrader. Greedoids. Springer…
  • 1991
1 Excerpt

Submodular Functions and Polymatroid Optimization

  • E. L. Lawler
  • A.H.G. Rinnooy Kan (eds.) M. O'hEigeartaigh, J.K…
  • 1985
1 Excerpt

Submodular functions and convexity

  • L. Lov asz
  • Mathematical Programming: The State of the Art,
  • 1983
1 Excerpt

Combinatorial Optimization

  • C. H. Papadimitriou, K. S. Stieglitz
  • Prentice-Hall, Englewood Cli s, NJ
  • 1982
1 Excerpt

Majorization On Finite Partially Ordered Sets

  • K. Lih
  • SIAM J. Alg. Disc. Meth.,
  • 1982
3 Excerpts

Similar Papers

Loading similar papers…