• Corpus ID: 16998381

Graviton and Spherical Graviton Potentials in Plane-Wave Matrix Model - overview and perspective -

@article{Shin2005GravitonAS,
  title={Graviton and Spherical Graviton Potentials in Plane-Wave Matrix Model - overview and perspective -},
  author={Hyeonjoon Shin and Kentaroh Yoshida},
  journal={arXiv: High Energy Physics - Theory},
  year={2005}
}
We briefly review our works for graviton and spherical graviton potentials in a plane-wave matrix model. To compute them, it is necessary to devise a configuration of the graviton solutions, since the plane-wave matrix model includes mass terms and hence the gravitons are not free particles as in the BFSS matrix model but harmonic oscillators or rotating particles. The configuration we proposed consists of a rotating graviton and an elliptically rotating graviton. It is applied to the two-body… 

Figures from this paper

Smearing effect in plane-wave matrix model

Motivated by the usual D2-D0 system, we consider a configuration composed of flat membrane and fuzzy sphere membrane in plane-wave matrix model, and investigate the interaction between them. The

Probing the smearing effect by a pointlike graviton in the plane-wave matrix model

We investigate the interaction between a flat membrane and pointlike graviton in the plane-wave matrix model. The one-loop effective potential in the large-distance limit is computed and is shown to

Dynamical tachyons on fuzzy spheres

The spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the BMN plane wave matrix model is studied and it is found that when two fuzzy spheres intersect at angles classical tachyons develop and the spectrum of these modes can be computed analytically.

N=4 SYM on R x S^3 and Theories with 16 Supercharges

We study N=4 SYM on R x S^3 and theories with 16 supercharges arising as its consistent truncations. These theories include the plane wave matrix model, N=4 SYM on R x S^2 and N=4 SYM on R x S^3/Z_k,

Dynamical aspects of the plane-wave matrix model at finite temperature

We study dynamical aspects of the plane-wave matrix model at finite temperature. One-loop calculation around general classical vacua is performed using the background field method, and the

References

SHOWING 1-10 OF 34 REFERENCES

28aWP-2 Point-like graviton scattering in plane-wave matrix model

In a plane-wave matrix model we discuss a two-body scattering of gravitons in the SO(3) symmetric space. In this case the graviton solutions are point-like in contrast to the scattering in the SO(6)

Transverse Fivebranes in Matrix Theory

M-theory on the maximally supersymmetric plane wave background of eleven-dimensional supergravity admits spherical BPS transverse M5-branes with zero light-cone energy. We give direct evidence that

27pYD-10 Membrane Fuzzy Sphere Dynamics in Plane-Wave Matrix Model(素粒子論)

Thermal instability of the giant graviton in a matrix model on a pp-wave background

The thermal instability of the giant graviton is investigated within the Berenstein-Maldacena-Nastase (BMN) matrix model. We calculate the one-loop thermal correction of the quantum fluctuation

Matrix perturbation theory for M-theory on a PP-wave

In this paper, we study the matrix model proposed by Berenstein, Maldacena, and Nastase to describe M-theory on the maximally supersymmetric pp-wave. We show that the model may be derived directly as

Spherical membranes in Matrix theory

We consider membranes of spherical topology in uncompactified Matrix theory. In general for large membranes Matrix theory reproduces the classical membrane dynamics up to 1/N corrections; for certain

Supersymmetric Branes in PP Wave Background

We consider the matrix model associated with pp-wave background and construct supersym-metric branes. In addition to the spherical membrane preserving 16 supersymmetries, one may construct rotating

Spherical membranes in m(atrix) theory

We consider membranes of spherical topology in uncompactified Matrix theory. In general for large membranes Matrix theory reproduces the classical membrane dynamics up to 1/N corrections; for certain