Gravitational wave consistency relations for multifield inflation.

  title={Gravitational wave consistency relations for multifield inflation.},
  author={Layne Price and Hiranya V. Peiris and Jonathan Frazer and Richard Easther},
  journal={Physical review letters},
  volume={114 3},
We study the tensor spectral index n(t) and the tensor-to-scalar ratio r in the simplest multifield extension to single-field, slow-roll inflation models. We show that multifield models with potentials V∼[under ∑]iλ_{i}|ϕ_{i}|^{p} have different predictions for n(t)/r than single-field models, even when all the couplings are equal λ_{i}=λ_{j}, due to the probabilistic nature of the fields' initial values. We analyze well-motivated prior probabilities for the λ_{i} and initial conditions to make… 

Figures from this paper

Calculation of the Curvature Perturbation During Non-Canonical Multifield Inflation

In this thesis we study models of inflation with a curved field-space metric. We concern ourselves with the calculation of the statistics of curvature perturbations which is essential for connecting

Non-Gaussianities and tensor-to-scalar ratio in non-local R2-like inflation

In this paper we will study $R^2$-like inflation in a non-local modification of gravity which contains quadratic in Ricci scalar and Weyl tensor terms with analytic infinite derivative form-factors

Gravitational waves from inflation

The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the

Power spectrum oscillations from Planck-suppressed operators in effective field theory motivated monodromy inflation

We consider a phenomenological model of inflation where the inflaton is the phase of a complex scalar field $\Phi$. Planck-suppressed operators of $\mathcal O(f^5/M_\mathrm{pl})$ modify the geometry

Many-field inflation: universality or prior dependence?

We investigate the observational signatures of many-field inflation and present analytic expressions for the spectral index as a function of the prior. For a given prior we employ the central limit

Inflation in non-minimal matter-curvature coupling theories

We study inflationary scenarios driven by a scalar field in the presence of a non-minimal coupling between matter and curvature. We show that the Friedmann equation can be significantly modified when

Large scale power suppression in a multifield landscape

Power suppression of the cosmic microwave background on the largest observable scales could provide valuable clues about the particle physics underlying inflation. Here we consider the prospect of

Inflation in a conformally invariant two-scalar-field theory with an extra $$R^2$$R2 term

We explore inflationary cosmology in a theory where there are two scalar fields which non-minimally couple to the Ricci scalar and an additional $$R^2$$R2 term, which breaks the conformal invariance.

MULTIMODECODE: an efficient numerical solver for multifield inflation

We present MULTIMODECODE, a Fortran 95/2000 package for the numerical exploration of multifield inflation models. This program facilitates efficient Monte Carlo sampling of prior probabilities for

Slow-roll approximation in quantum cosmology

In minimally coupled scalar field theories with a potential of the slow-roll type, we give a detailed description of the complex O(4)-symmetric solutions to Einstein’s equations on the four-ball



Society of Photo-Optical Instrumentation Engineers

We report here the preliminary results obtained with the multi-conjugate adaptive optics (MCAO) system at the Dunn Solar Telescope (DST/NSO MCAO) and the optical setup and performances are presented

BICEP2 Collaboration), Phys.Rev.Lett

  • 2014

I and J


  • Phys. 05
  • 2006


  • Phys. 01
  • 2006


  • Rev. D 73, 123503
  • 2006


  • Phys. 10
  • 2013

and L

  • C. Price, Phys.Rev.Lett. 112, 161302
  • 2014

JCAP 1307

  • 002
  • 2013

arXiv:1306.2259 [astro-ph.CO

  • (PRISM Collaboration),
  • 2013