• Corpus ID: 246035568

Grassmann Phase Space Theory for the BEC/BCS Crossover in Cold Fermionic Atomic Gases

@inproceedings{Dalton2022GrassmannPS,
  title={Grassmann Phase Space Theory for the BEC/BCS Crossover in Cold Fermionic Atomic Gases},
  author={Bryan J Dalton},
  year={2022}
}
Grassmann Phase Space Theory (GSPT) is applied to the BEC/BCS crossover in cold fermionic atomic gases and used to determine the evolution (over either time or temperature) of the Quantum Correlation Functions (QCF) that specify: (a) the positions of the spin up and spin down fermionic atoms in a single Cooper pair and (b) the positions of the two spin up and two spin down fermionic atoms in two Cooper pairs The first of these QCF is relevent to describing the change in size of a Cooper pair… 

References

SHOWING 1-10 OF 21 REFERENCES

Quantum Gas Experiments - Exploring Many-Body States

Many-Body Effects in Optical Lattices Experimental Techniques for Fermions Feshbach Resonance Specific Optical Lattices In situ and Single Site Imaging of Quantum Gases Quantum Noise Correlation

An introduction to Monte Carlo methods

Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics

From the contents: A Historical Introduction.- Quantum Statistics.- Quantum Langevin Equations.- Phase Space Methods.- Quantum Markov Processes.- Applying the Master Equation.- Amplifiers and

Methods in Theoretical Quantum Optics

1. Foundations 2. Coherent interactions 3. Operators and states 4. Quantum statistics of fields 5. Dissipative processes 6. Dressed states Appendices Selected bibliography Index 1. Foundations 2.

in Ultracold Fermi Gases

  • Proc. International School of Physics, Varenna 2006, (eds) M. Inguscio, W. Ketterle and C. Salomon,
  • 2008

Phys

  • Rev. A 64, 063409
  • 2001

Quantum Optics

New J

  • Phys. 17, 032002
  • 2015

A: Math

  • Gen. 13, 2353
  • 1980

A: Math

  • Gen. 51, 245302
  • 2018