Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction


Graphene-Co₃O₄ composite with a unique sandwich-architecture was successfully synthesized and applied as an efficient electrocatalyst for oxygen evolution reaction. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses confirmed that Co₃O₄ nanocrystals were homogeneously distributed on both sides of graphene nanosheets. The obtained composite shows enhanced catalytic activities in both alkaline and neutral electrolytes. The onset potential towards the oxygen evolution reaction is 0.406 V (vs. Ag/AgCl) in 1 M KOH solution, and 0.858 V (vs. Ag/AgCl) in neutral phosphate buffer solution (PBS), respectively. The current density of 10 mA/cm(2) has been achieved at the overpotential of 313 mV in 1 M KOH and 498 mV in PBS. The graphene-Co₃O₄ composite also exhibited an excellent stability in both alkaline and neutral electrolytes. In particular, no obvious current density decay was observed after 10 hours testing in alkaline solution and the morphology of the material was well maintained, which could be ascribed to the synergistic effect of combining Co₃O₄ and graphene.

DOI: 10.1038/srep07629

Extracted Key Phrases

6 Figures and Tables

Citations per Year

Citation Velocity: 5

Averaging 5 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@inproceedings{Zhao2015GrapheneCo3O4NA, title={Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction}, author={Yufei Zhao and Shuangqiang Chen and Bing Sun and Dawei Su and Xiaodan Huang and Hao Liu and Yiming Yan and Kening Sun and Guoxiu Wang}, booktitle={Scientific reports}, year={2015} }