Granulocyte-macrophage colony stimulating factor gene expression and function during tumor promotion.

Abstract

Although recent evidence suggests that granulocyte-macrophage colony stimulating factor (GM-CSF) plays a role in cutaneous inflammation induced by topical exposure of phorbol ester tumor promoters to murine epidermis, there is little information available on the temporal sequence of gene expression of this cytokine over the time course of tumor promotion or about its function in this process. The goal of the present studies was to examine the potential role of GM-CSF in tumor promotion in SENCAR mice. Competitive reverse transcriptase polymerase chain reaction (RT-PCR) studies demonstrated that a single topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA; 2 micrograms, 10 micrograms) to the dorsal epidermis of SENCAR mouse skin stimulated a dose and time dependent GM-CSF gene expression that was upregulated at 1 h after TPA exposure, peaked at 3 h and declined at 12 h. Although treatment with 7',12'-dimethylbenz[a]anthracene (DMBA) did not stimulate GM-CSF gene expression, GM-CSF gene expression was elevated in epidermal tissue isolated from SENCAR mice treated with a single application of 10 nmol DMBA followed by multiple applications of 2 micrograms TPA over a 1-22 week time course. Immunochemical and autoradiographic studies demonstrated that GM-CSF protein was produced by suprabasal keratinocytes, interfollicular cells, nonproliferating papilloma cells and leukocytes within the dermis. Intraperitoneal injection of recombinant (r) GM-CSF into SENCAR mice at 2 h prior to topical application of 10 micrograms TPA induced a significant increase in epidermal keratinocyte proliferation, leukocyte infiltration into the dermis, hydroperoxide production by circulating neutrophils and chemotactic activity present within the plasma at 24 h compared to treatment with only 10 micrograms TPA. Intravenous injection of anti-GM-CSF antibodies significantly inhibited both local and systemic inflammatory events induced by topical application of TPA. The present studies suggest that GM-CSF has a broad spectrum of activity with at least two target cell populations, epidermal keratinocytes within the proliferative compartment and leukocytes. This cytokine is actively transcribed during the tumor promotion process, acts as a signal peptide that stimulates epidermal proliferation, primes circulating neutrophils to produce hydroperoxide and regulates leukocyte migration.

Statistics

0100200'97'99'01'03'05'07'09'11'13'15'17
Citations per Year

225 Citations

Semantic Scholar estimates that this publication has 225 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Robertson1994GranulocytemacrophageCS, title={Granulocyte-macrophage colony stimulating factor gene expression and function during tumor promotion.}, author={Fredika M. Robertson and G N Bijur and Andrew S Oberyszyn and Andrew E. Pellegrini and L{\'a}szl{\'o} G. Boros and Carol Sabourin and Tatiana M. Oberyszyn}, journal={Carcinogenesis}, year={1994}, volume={15 5}, pages={1017-29} }