Gröbner bases of ideals invariant under a commutative group: the non-modular case

@inproceedings{Faugre2013GrbnerBO,
  title={Gr{\"o}bner bases of ideals invariant under a commutative group: the non-modular case},
  author={Jean-Charles Faug{\`e}re and Jules Svartz},
  booktitle={ISSAC},
  year={2013}
}
We propose efficient algorithms to compute the Gröbner basis of an ideal <i>I</i> subset <i>k</i>[<i>x</i><sub>1</sub>,...,<i>x<sub>n</sub></i>] globally invariant under the action of a commutative matrix group <i>G</i>, in the non-modular case (where <i>char</i>(<i>k</i>) doesn't divide |<i>G</i>|). The idea is to simultaneously diagonalize the matrices in <i>G</i>, and apply a linear change of variables on <i>I</i> corresponding to the base-change matrix of this diagonalization. We can now… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-3 of 3 references

Algorithms in Invariant Theory

Texts & Monographs in Symbolic Computation • 1993
View 5 Excerpts
Highly Influenced

Similar Papers

Loading similar papers…