Gröbner Bases and Primary Decomposition of Polynomial Ideals

@article{Gianni1988GrbnerBA,
  title={Gr{\"o}bner Bases and Primary Decomposition of Polynomial Ideals},
  author={P. Gianni and Barry M. Trager and G. Zacharias},
  journal={J. Symb. Comput.},
  year={1988},
  volume={6},
  pages={149-167}
}
  • P. Gianni, Barry M. Trager, G. Zacharias
  • Published 1988
  • Computer Science, Mathematics
  • J. Symb. Comput.
  • We present an algorithm to compute the primary decomposition of any ideal in a polynomialring over a factorially closed algorithmic principal ideal domain R. This means that the ring R is a constructive PID and that we are given an algorithm to factor polynomials over fields which are finitely generated over R or residue fields of R. We show how basic ideal theoretic operations can be performed using Grobner bases and we exploit these constructions to inductively reduce the problem to zero… CONTINUE READING
    425 Citations

    Topics from this paper

    Properties of Entire Functions Over Polynomial Rings via Gröbner Bases
    • 2
    New Algorithms for Computing Primary Decomposition of Polynomial Ideals
    • M. Noro
    • Mathematics, Computer Science
    • ICMS
    • 2010
    • 3
    An algorithm for primary decomposition in polynomial rings over the integers
    • 4
    • PDF
    Prime Decompositions of Radicals in Polynomial Rings
    • 21
    • Highly Influenced
    • PDF
    Modular absolute decomposition of equidimensional polynomial ideals
    • 1
    • PDF
    Gröbner Bases and Primary Decomposition of Modules
    • E. W. Rutman
    • Computer Science, Mathematics
    • J. Symb. Comput.
    • 1992
    • 16
    • PDF

    References

    SHOWING 1-10 OF 34 REFERENCES
    Ideal Bases and Primary Decomposition: Case of Two Variables
    • D. Lazard
    • Computer Science, Mathematics
    • J. Symb. Comput.
    • 1985
    • 80
    Factorization over finitely generated fields
    • 18
    A theoretical basis for the reduction of polynomials to canonical forms
    • 272
    A criterion for detecting unnecessary reductions in the construction of Groebner bases
    • 363
    A constructive approach to commutative ring theory
    • 55
    The decomposition theorem for ideals in polynomial rings over a domain
    • 10
    • Highly Influential
    Commutative Algebra, Vohlme L Graduate Texts in Mathematics
    • Commutative Algebra, Vohlme L Graduate Texts in Mathematics
    • 1975
    Ein algorithmus zum Auffinden der Basiselemente des Restklassenringes naeh einem nulldimensionalen Polynomideal
    • Ein algorithmus zum Auffinden der Basiselemente des Restklassenringes naeh einem nulldimensionalen Polynomideal
    • 1965