Global extrapolation with a parallel splitting method

@article{Tai1992GlobalEW,
  title={Global extrapolation with a parallel splitting method},
  author={Xue-Cheng Tai},
  journal={Numerical Algorithms},
  year={1992},
  volume={3},
  pages={427-440}
}
Extrapolation with a parallel splitting method is discussed. The parallel splitting method reduces a multidimensional problem into independent one-dimensional problems and can improve the convergence order of space variables to an order as high as the regularity of the solution permits. Therefore, in order to match the convergence order of the space variables, a high order method should also be used for the time integration. Second and third order extrapolation methods are used to improve the… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Parallel computing with splitting-up methods and the distributed parameter identification problems, Thesis, University of Jyv~iskyl~i

  • X.-C. Tai
  • Department of Mathematics, Report
  • 1991
Highly Influential
3 Excerpts

Global extrapolation of a first order splitting method

  • J. G. Verwer, H. B. De Vries
  • SIAM J. Sci. Stat. Comput
  • 1985
Highly Influential
5 Excerpts

The extrapolation of first order methods for parabolic partial differential equations - I

  • J. D. Lawson, J. Li. Morris
  • SIAM J. Numer. Anal
  • 1978
Highly Influential
5 Excerpts

Neittaanm ~ iki , Parallel finite element splittingup method for parabolic problems

  • P.
  • Numer . Meth . Part . Diff . Equat .
  • 1991

Generalized alternating direction collocation methods for parabolic equations

  • G. F. Pinder
  • Numer . Meth . Part . Diff . Equat .
  • 1990

Generalized alternating direction collocation methods for parabolic equations, Numer

  • M. A. Cellia, G. F. Pinder
  • Meth. Part. Diff. Equat
  • 1990
1 Excerpt

Splitting and alternating direction methods

  • G. I. Marchuk
  • in: Handbook of Numerical Analysis,
  • 1990
1 Excerpt

Ten Thije Boonkkamp, Vect0rization of the odd-even hopscotch scheme and the alternating direction implicit scheme for the two dimensional Burgers equations

  • J.H.M.E.D. De Goede
  • SIAM J. Sci. Stat. Comput
  • 1990
1 Excerpt

A parallel algorithm for a class of convex programming

  • S.-P. Han, G. Lou
  • SIAM J. Contr. Optim
  • 1988
1 Excerpt

Alternating direction methods on multiprocessor

  • S. L. Johnsson, Y. Saad, M. H. Schultz
  • SIAM J. Sci. Stat. Comput
  • 1987
1 Excerpt

Similar Papers

Loading similar papers…