Global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant

@article{Pang2017GlobalEO,
  title={Global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant},
  author={P. Pang and Y. Wang},
  journal={Journal of Differential Equations},
  year={2017},
  volume={263},
  pages={1269-1292}
}
  • P. Pang, Y. Wang
  • Published 2017
  • Mathematics
  • Journal of Differential Equations
Abstract This paper deals with the cancer invasion model { u t = Δ u − χ ∇ ⋅ ( u ∇ v ) − ξ ∇ ⋅ ( u ∇ w ) + μ u ( 1 − u − w ) , x ∈ Ω , t > 0 , v t = Δ v − v + u , x ∈ Ω , t > 0 , w t = − v w + η w ( 1 − w − u ) , x ∈ Ω , t > 0 in a bounded smooth domain Ω ⊂ R 2 with zero-flux boundary conditions, where χ , ξ , μ and η are positive parameters. Compared to previous mathematical studies, the novelty here lies in: first, our treatment of the full parabolic chemotaxis–haptotaxis system; and second… Expand
17 Citations
A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant
  • 11
  • Highly Influenced
  • PDF
Highlight : Mathematical properties of a cancer invasion model
  • PDF
Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis--haptotaxis
  • 6
  • PDF
...
1
2
...

References

SHOWING 1-10 OF 43 REFERENCES
...
1
2
3
4
5
...