Corpus ID: 119138220

Geometry of folded hypercomplex structures

@article{Bielawski2019GeometryOF,
  title={Geometry of folded hypercomplex structures},
  author={Roger Bielawski and Carolin Peternell},
  journal={arXiv: Differential Geometry},
  year={2019}
}
  • Roger Bielawski, Carolin Peternell
  • Published 2019
  • Mathematics
  • arXiv: Differential Geometry
  • We investigate the geometry of the Kodaira moduli space $M$ of sections of $\pi:Z\to {\mathbb P}^1$, the normal bundle of which is allowed to jump from ${\mathcal O}(1)^{n}$ to ${\mathcal O}(1)^{n-2m}\oplus {\mathcal O}(2)^{m}\oplus {\mathcal O}^{m}$. In particular, we identify the natural assumptions which guarantee that the Obata connection of the hypercomplex part of $M$ extends to a logarithmic connection on $M$. 
    2 Citations

    References

    SHOWING 1-8 OF 8 REFERENCES
    The Penrose Transform: Its Interaction with Representation Theory
    • 272
    M\'etriques hyperk\"ahl\'eriennes pli\'ees
    • 8
    • PDF
    Twistor transform of vector bundles
    • 4
    • PDF
    Higgs bundles and diffeomorphism groups
    • 20
    • PDF
    On the embeddings of the Riemann sphere with nonnegative normal bundles
    • 12
    • Highly Influential
    • PDF
    On self-dual gauge fields
    • 399
    Theory of logarithmic differential forms and logarithmic vector fields
    • 526
    Merkulov, ‘Twistor transform of vector bundles
    • Math. Scand.,
    • 1999