Geometric invariant measuring the deviation from Kerr data.

@article{Backdahl2010GeometricIM,
  title={Geometric invariant measuring the deviation from Kerr data.},
  author={T. Backdahl and J. A. Kroon},
  journal={Physical Review Letters},
  year={2010},
  volume={104},
  pages={231102}
}
  • T. Backdahl, J. A. Kroon
  • Published 2010
  • Physics
  • Physical Review Letters
  • A geometrical invariant for regular asymptotically Euclidean data for the vacuum Einstein field equations is constructed. This invariant vanishes if and only if the data correspond to a slice of the Kerr black hole spacetime--thus, it provides a measure of the non-Kerr-like behavior of generic data. In order to proceed with the construction of the geometric invariant, we introduce the notion of approximate Killing spinors. 
    30 Citations
    How to Measure Deviation from the Kerr Initial Data: Recent Progress
    On the Construction of a Geometric Invariant Measuring the Deviation from Kerr Data
    • 19
    A Geometric Invariant Characterising Initial Data for the Kerr–Newman Spacetime
    • 2
    • PDF
    On the construction of a geometric invariant measuring the deviation from Kerr data
    • 15
    • PDF
    Dain's invariant on non-time symmetric initial data sets
    • 4
    • PDF
    The ‘non-Kerrness’ of domains of outer communication of black holes and exteriors of stars
    • 11
    Approximate twistors and positive mass
    • 7
    • PDF

    References

    SHOWING 1-10 OF 14 REFERENCES
    Phys
    • 58, 1186
    • 2008
    Acta Mathematica 146
    • 129
    • 1981
    Bull
    • Am. Math. Soc. 5, 235
    • 1981
    Class
    • 18,124
    Comm
    • Pure Appl. Math. 39, 661
    • 1986
    Duke Math
    • Journal 48, 289
    • 1981
    In preparation ( 2010 ) . [ 5 ] S . Dain
    • Phys . Rev . Lett .
    • 2009
    Phys
    • 21, 2567
    • 1980
    Phys
    • Rev. Lett. 93, 231101
    • 2004
    Phys
    • 25, 1955
    • 1984