Geometric Quantization of the Brst Charge

  title={Geometric Quantization of the Brst Charge},
  author={G. M. Tuynman},
  • G. M. Tuynman
  • Published 1992
In the first half of this paper (§1-4) we generalise the standard geometric quantization procedure to symplectic supermanifolds. In the second half (§5,6) we apply this to two examples that exhibit classical BRST symmetry, i.e., we quantize the BRST charge and the ghost number. More precisely, in the first example we consider the reduced symplectic manifold obtained by symplectic reduction from a free group action with Ad∗-equivariant moment map; in the second example we consider a foliated… CONTINUE READING

From This Paper

Topics from this paper.
7 Citations
24 References
Similar Papers


Publications referenced by this paper.
Showing 1-10 of 24 references

Quantization and Bosonic BRS theory

  • J. Elhadad, M. J. Gotay, G. M. Tuynman
  • Ann . Phys .
  • 1991

Quantization of first class constraints with structure

  • G. M. Tuynman
  • functions, Lett. Math. Phys
  • 1991

The BRS method and geometric quantization : some examples

  • J. Elhadad, M. J. Gotay, J. Sniatycki, G. M. Tuynman
  • Commun . Math . Phys .
  • 1990

Tuynman, Nonunimodularity and the quantization of the pseudo-rigid-body, Hamiltonian systems, transformation groups and spectral transform methods (J

  • C. Duval, J. Elhadad, G.M.M.J. Gotay
  • Harnad & J.E. Marsden, eds.), Publ. C.R.M…
  • 1990

Tuynman, The BRS method and geometric quantization : some examples

  • C. Duval, G.M.J. Elhadad
  • Commun. Math. Phys
  • 1990

Classical foundations of BRST symmetry, Monographs and textbooks in physical sciences lecture notes

  • M. Henneaux
  • 1988

Constrained Poisson algebras and strong homotopy representations

  • J. Stasheff
  • Bull. AMS
  • 1988

Orientations of supermanifolds

  • V. N. Shander
  • Functional Anal. Appl
  • 1988

Teitelboim, Existence, uniqueness and cohomology of the classical BRST charge with ghosts of ghosts

  • J. Fisch, M. Henneaux, C. J. Stasheff
  • Comm. Math. Phys
  • 1988

The extended phase space of the BRS approach

  • R. Loll
  • Comm. Math. Phys
  • 1988

Similar Papers

Loading similar papers…