Geometric Class Field Theory Ii


Homcts(π1,ét(C),Q × ` ) ∼= Hom(Pic0(k),Q` ) + (Ẑ Frobc −−−→ Q` ). where c ∈ C(Fq) is a fixed rational point. Our proof will proceed by upgrading this equality to an equivalence of geometric objects. First, we’ll interpretHomcts(π1,ét(C),Q × ` ) in terms of rank one `-adic local systems on C. Similarly, we’ll interpret the datum of Hom(Pic0(k),Q… (More)

Cite this paper

@inproceedings{Feng2016GeometricCF, title={Geometric Class Field Theory Ii}, author={Tony Feng}, year={2016} }