Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals TransLesion Synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination.

@article{Chen2006GeneticAO,
  title={Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals TransLesion Synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination.},
  author={Clark C Chen and Akira Motegi and Yuko Hasegawa and Kyungjae Myung and Richard Kolodner and Alan D'andrea},
  journal={DNA repair},
  year={2006},
  volume={5 12},
  pages={1475-88}
}
Ionizing radiation-induced mutagenesis (IR-IM) underlies a basis for radiation associated carcinogenesis as well as resistance to radiation therapy. This process was examined in Saccharomyces cerevisiae using an array of isogenic DNA repair deficient mutants. Mutations inactivating homologous recombination (rad51, 52, 54) or nucleotide excision repair (rad1, rad10, rad4) caused elevated IR-IM whereas inactivation of TransLesion Synthesis (TLS: rad6) caused severely defective IR-IM. Of the… CONTINUE READING