Genetic Exploration of the Exit from Self-Renewal Using Haploid Embryonic Stem Cells


Self-renewal circuitry in embryonic stem cells (ESCs) is increasingly defined. How the robust pluripotency program is dissolved to enable fate transition is less appreciated. Here we develop a forward genetic approach using haploid ESCs. We created libraries of transposon integrations and screened for persistent self-renewal in differentiation-permissive culture. This yielded multiple mutants in the Fgf/Erk and GSK3/Tcf3 modules known to drive differentiation and in epigenetic modifiers implicated in lineage commitment. We also identified and validated factors not previously considered. These include the conserved small zinc finger protein Zfp706 and the RNA binding protein Pum1. Pum1 targets several mRNAs for naive pluripotency transcription factors and accelerates their downregulation at the onset of differentiation. These findings indicate that the dismantling of pluripotent circuitry proceeds at multiple levels. More broadly they exemplify the power of haploid ESCs for genetic interrogation of developmental processes.

DOI: 10.1016/j.stem.2013.12.008

Extracted Key Phrases

4 Figures and Tables

Citations per Year

185 Citations

Semantic Scholar estimates that this publication has 185 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Leeb2014GeneticEO, title={Genetic Exploration of the Exit from Self-Renewal Using Haploid Embryonic Stem Cells}, author={Martin Leeb and Sabine Dietmann and Maike Paramor and Hitoshi Niwa and Austin Smith}, booktitle={Cell stem cell}, year={2014} }