Generic ideals and Moreno-Socías conjucture


Let <i>f</i><subscrpt>1</subscrpt>,&#8230;,<i>f<subscrpt>n</subscrpt></i> be homogeneous polynomials generating a generic ideal <i>I</i> in the ring of polynomials in <i>n</i> variables over an infinite field. Moreno-Soc&#237;as conjectured that for the graded reverse lexicographic term ordering, the initial ideal in(<i>I</i>) is a weakly reverse lexicographic ideal. This paper contains a new proof of Moreno-Soc&#237;as' conjecture for the case <i>n</i> = 2.

DOI: 10.1145/384101.384105

1 Figure or Table

Cite this paper

@inproceedings{Aguirre2001GenericIA, title={Generic ideals and Moreno-Soc{\'i}as conjucture}, author={Edith Aguirre and Abdul Salam Jarrah and Reinhard C. Laubenbacher}, booktitle={ISSAC}, year={2001} }