Generating functions for vector partition functions and a basic recurrence relation

@article{Lyapin2019GeneratingFF,
  title={Generating functions for vector partition functions and a basic recurrence relation},
  author={A. P. Lyapin and S. Chandragiri},
  journal={Journal of Difference Equations and Applications},
  year={2019},
  volume={25},
  pages={1052 - 1061}
}
  • A. P. Lyapin, S. Chandragiri
  • Published 2019
  • Mathematics
  • Journal of Difference Equations and Applications
  • ABSTRACT We define a generalized vector partition function and derive an identity for the generating series of such functions associated with solutions to basic recurrence relations of combinatorial analysis. As a consequence we obtain the generating function of the number of generalized lattice paths and a new version of the Chaundy-Bullard identity for the vector partition function. 
    1 Citations

    References

    SHOWING 1-10 OF 25 REFERENCES
    On Vector Partition Functions
    • B. Sturmfels
    • Mathematics, Computer Science
    • J. Comb. Theory, Ser. A
    • 1995
    • 111
    Linear recurrences with constant coefficients: the multivariate case
    • 150
    • PDF
    On Generalized Dyck Paths
    • 20
    • PDF
    On an identity by Chaundy and Bullard. I
    • 16
    • PDF
    Ten Lectures on Wavelets
    • 14,306