# Generating function for the Bannai-Ito polynomials

@article{Bergeron2018GeneratingFF, title={Generating function for the Bannai-Ito polynomials}, author={Geoffroy Bergeron and Luc Vinet and Satoshi Tsujimoto}, journal={Proceedings of the American Mathematical Society}, year={2018} }

<p>A generating function for the Bannai-Ito polynomials is derived using the fact that these polynomials are known to be essentially the Racah or <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="6 j">
<mml:semantics>
<mml:mrow>
<mml:mn>6</mml:mn>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:annotation encoding="application/x-tex">6j</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> coefficients of the…

## References

SHOWING 1-10 OF 19 REFERENCES

Dunkl shift operators and Bannai-Ito polynomials

- Mathematics
- 2011

We consider the most general Dunkl shift operator $L$ with the following properties: (i) $L$ is of first order in the shift operator and involves reflections; (ii) $L$ preserves the space of…

Convolutions for orthogonal polynomials from Lie and quantum algebra representations.

- Mathematics
- 1996

Theinterpretation of the Meixner--Pollaczek, Meixner, and Laguerre polynomials as overlap coefficients in the positive discrete series representations of the Lie algebra ${\frak{su}}(1,1)$ and the…

A Laplace-Dunkl Equation on S2 and the Bannai–Ito Algebra

- Mathematics
- 2015

The analysis of the $${\mathbb{Z}_2^{3}}$$Z23 Laplace-Dunkl equation on the 2-sphere is cast in the framework of the Racah problem for the Hopf algebra sl−1(2). The related Dunkl-Laplace operator is…

The Bannai-Ito polynomials as Racah coefficients of the sl_{-1}(2) algebra

- Mathematics, Physics
- 2012

The Bannai-Ito polynomials are shown to arise as Racah coefficients for sl_{-1}(2). This Hopf algebra has four generators including an involution and is defined with both commutation and…

The Generic Superintegrable System on the 3-Sphere and the 9j Symbols of su(1,1)

- Mathematics, Physics
- 2014

The 9j symbols of su(1; 1) are studied within the framework of the generic superintegrable system on the 3-sphere. The canonical bases corresponding to the binary coupling schemes of four su(1; 1)…

The Bannai–Ito algebra and a superintegrable system with reflections on the two-sphere

- Physics, Mathematics
- 2014

A quantum superintegrable model with reflections on the two-sphere is introduced. Its two algebraically independent constants of motion generate a central extension of the Bannai–Ito algebra. The…

Coupling coefficients for Lie algebra representations and addition formulas for special functions

- Mathematics
- 1997

Representations of the Lie algebra su(1,1) and of a generalization of the oscillator algebra, b(1), are considered. The paper then introduces polynomials which are related by the coupling (or…

Realizations of su(1,1) and Uq(su(1,1)) and generating functions for orthogonal polynomials

- Physics, Mathematics
- 1998

Positive discrete series representations of the Lie algebra su(1,1) and the quantum algebra Uq(su(1,1)) are considered. The diagonalization of a self-adjoint operator (the Hamiltonian) in these…

FROM slq(2) TO A PARABOSONIC HOPF ALGEBRA

- Mathematics, Physics
- 2011

A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations…

Generating functions for the {\mathfrak{osp}}(1| 2) Clebsch-Gordan coefficients

- Mathematics, Physics
- 2016

Generating functions for Clebsch–Gordan coefficients of are derived. These coefficients are expressed as limits of the dual q-Hahn polynomials. The generating functions are obtained using two…