Generalized Galileon duality

  title={Generalized Galileon duality},
  author={Claudia de Rham and Luke Keltner and Andrew J. Tolley},
  journal={Physical Review D},
We generalize the Galileon duality to any single scalar field Lagrangian coupled locally to any matter field. Under the duality, a generalized Galileon maps into another generalized Galileon via a one-parameter group of transformations, with only a simple modification of the Lagrangian functions. We find a special class of generalized Galileons for which the duality is a symmetry of the action. We further extend the duality to the case of vector fields and give the dual formulations of the… 

Figures from this paper

Quantum corrections in Galileons from matter loops

Galileon interactions represent a class of effective field theories that have received much attention since their inception. They can be treated in their own right as scalar field theories with a

Inequivalence of coset constructions for spacetime symmetries

A bstractNon-linear realizations of spacetime symmetries can be obtained by a generalization of the coset construction valid for internal ones. The physical equivalence of different representations

A geometrical approach to degenerate scalar-tensor theories

A bstractDegenerate scalar-tensor theories are recently proposed covariant theories of gravity coupled with a scalar field. Despite being characterised by higher order equations of motion, they do

UV properties of Galileons: Spectral Densities

We propose a picture for the UV properties of Galileon field theories. We conjecture that Galileons, and all theories incorporating the Vainshtein mechanism, fall into Jaffe's class of

Inequivalence of Coset Constructions for Spacetime Symmetries: Coupling with Gravity

We study how the coupling with gravity of theories with non-linearly realized space-time symmetries is modified when one changes the parametrization of the coset. As an example, we focus on the

Aspects of Galileons

Galileons are a class of scalar field theories which have been found to arise in a disparate variety of contexts and exhibit a host of interesting properties by themselves, both classical and

Exceptional nonrelativistic effective field theories with enhanced symmetries

We initiate the classification of nonrelativistic effective field theories (EFTs) for Nambu-Goldstone (NG) bosons, possessing a set of redundant, coordinate-dependent symmetries. Similarly to the

Unification of Galileon dualities

A bstractWe study dualities of the general Galileon theory in d dimensions in terms of coordinate transformations on the coset space corresponding to the spontaneously broken Galileon group. The most

A first-order approach to conformal gravity

We investigate whether a spontaneously-broken gauge theory of the group SU(2,2) may be a viable alternative to general relativity. The basic ingredients of the theory are an SU(2,2) gauge field Aμ

Riding on irrelevant operators

We investigate the stability of a class of derivative theories known as P(X) and Galileons against corrections generated by quantum effects. We use an exact renormalisation group approach to argue



Covariant Master Theory for Novel Galilean Invariant Models and Massive Gravity

Coupling the galileons to a curved background has been a tradeoff between maintaining second order equations of motion, maintaining the galilean shift symmetries, and allowing the background metric

DBI and the Galileon reunited

We derive the relativistic generalization of the Galileon, by studying the brane position modulus of a relativistic probe brane embedded in a five- dimensional bulk. In the appropriate Galilean

Inequivalence of coset constructions for spacetime symmetries

A bstractNon-linear realizations of spacetime symmetries can be obtained by a generalization of the coset construction valid for internal ones. The physical equivalence of different representations

From k-essence to generalised Galileons

We determine the most general scalar field theories which have an action that depends on derivatives of order two or less, and have equations of motion that stay second order and lower on flat

Galileon as a local modification of gravity

In the Dvali-Gabadadze-Porrati (DGP) model, the "self-accelerating" solution is plagued by a ghost instability, which makes the solution untenable. This fact, as well as all interesting departures

Non-linear representations of the conformal group and mapping of galileons

A bstractThere are two common non-linear realizations of the 4D conformal group: in the first, the dilaton is the conformal factor of the effective metric ημνe−2π ; in the second it describes the

Generalization of the Fierz-Pauli action

We consider the Lagrangian of gravity covariantly amended by the mass and polynomial interaction terms with arbitrary coefficients and reinvestigate the consistency of such a theory in the decoupling

Chronology protection in Galileon models and massive gravity

Galileon models are a class of effective field theories that have recently received much attention. They arise in the decoupling limit of theories of massive gravity, and in some cases they have been

Nonlinear dynamics of 3D massive gravity

We explore the nonlinear classical dynamics of the three-dimensional theory of “New Massive Gravity” proposed by Bergshoeff, Hohm and Townsend. We find that the theory passes remarkably highly