Generalized (anti) Yetter-Drinfeld modules as components of a braided T-category

@article{Panaite2005GeneralizedY,
  title={Generalized (anti) Yetter-Drinfeld modules as components of a braided T-category},
  author={Florin Panaite and Mihai D. Staic},
  journal={Israel Journal of Mathematics},
  year={2005},
  volume={158},
  pages={349-365}
}
AbstractIf H is a Hopf algebra with bijective antipode and α, β ∈ AutHopf(H), we introduce a category $$_H \mathcal{Y}\mathcal{D}^H (\alpha ,\beta )$$ , generalizing both Yetter-Drinfeld modules and anti-Yetter-Drinfeld modules. We construct a braided T-category $$\mathcal{Y}\mathcal{D}(H)$$ having all the categories $$_H \mathcal{Y}\mathcal{D}^H (\alpha ,\beta )$$ as components, which, if H is finite dimensional, coincides with the representations of a certain quasitriangular T-coalgebra… CONTINUE READING

Citations

Publications citing this paper.
SHOWING 1-10 OF 17 CITATIONS