General Domain Circumscription and its Effective Reductions


We rst deene general domain circumscription (GDC) and provide it with a semantics. GDC subsumes existing domain circumscription proposals in that it allows varying of arbitrary predicates, functions, or constants, to maximize the minimization of the domain of a theory. We then show that for the class of semi-universal theories without function symbols, that the domain circumscription of such theories can be constructively reduced to logically equivalent rst-order theories by using an extension of the DLS algorithm , previously proposed by the authors for reducing second-order formulas. We also show that for a certain class of domain circumscribed theories, that any arbitrary second-order circumscription policy applied to these theories is guaranteed to be reducible to a logically equivalent rst-order theory. In the case of semi-universal theories with functions and arbitrary theories which are not separated, we provide additional results, which although not guaranteed to provide reductions in all cases, do provide reductions in some cases. These results are based on the use of xpoint reductions.

DOI: 10.3233/FI-1998-3612

Extracted Key Phrases

Cite this paper

@article{Doherty1998GeneralDC, title={General Domain Circumscription and its Effective Reductions}, author={Patrick Doherty and Witold Lukaszewicz and Andrzej Szalas}, journal={Fundam. Inform.}, year={1998}, volume={36}, pages={23-55} }