Gauge theory and string topology

@article{Cohen2013GaugeTA,
  title={Gauge theory and string topology},
  author={R. Cohen and J. D. Jones},
  journal={Bolet{\'i}n de la Sociedad Matem{\'a}tica Mexicana},
  year={2013},
  volume={23},
  pages={233-255}
}
  • R. Cohen, J. D. Jones
  • Published 2013
  • Mathematics
  • Boletín de la Sociedad Matemática Mexicana
  • Given a principal bundle over a closed manifold, $$G \rightarrow P \rightarrow M$$G→P→M, let $$P^{Ad} \rightarrow M$$PAd→M be the associated adjoint bundle. Gruher and Salvatore (Proc Lond Math Soc 96(3), 78106 2008) showed that the Thom spectrum $$(P^\mathrm{Ad})^{-TM}$$(PAd)-TM is a ring spectrum whose corresponding product in homology is a Chas-Sullivan type string topology product. We refer to this spectrum as the “string topology spectrum of P”, $$ \mathcal {S}(P)$$S(P). In the universal… CONTINUE READING
    Quantization via Linear homotopy types
    • 20
    • PDF
    The factorization theory of Thom spectra and twisted nonabelian Poincaré duality
    • 11
    • PDF
    Bundles of spectra and algebraic K-theory
    • 6
    • PDF
    Homotopy automorphisms of R-module bundles, and the K-theory of string topology
    • 1
    • PDF
    Twisted Calabi–Yau ring spectra, string topology, and gauge symmetry
    • 1
    • PDF
    Joyal's Conjecture in Homotopy Type Theory
    • 3
    • PDF

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 22 REFERENCES
    The Yang-Mills equations over Riemann surfaces
    • 1,834
    • Highly Influential
    • PDF
    A homotopy theoretic realization of string topology
    • 241
    • PDF
    Parametrized Homotopy Theory
    • 205
    • PDF
    The Loop Homology Algebra of Spheres and Projective Spaces
    • 108
    • PDF
    (σ, ρ)-calculus
    • 849
    • PDF
    The dualizing spectrum of a topological group
    • 60
    • PDF
    An ∞‐categorical approach to R‐line bundles, R‐module Thom spectra, and twisted R‐homology
    • 63
    • Highly Influential
    • PDF
    Generalized string topology operations
    • 42
    • Highly Influential
    • PDF
    Quasi-categories and Kan complexes
    • 264
    • PDF
    THOM COMPLEXES
    • By M. F. ATIYAH
    • 2006
    • 59
    • PDF